系统接口设计大数据量(大数据量接口对接方式)

网友投稿 703 2022-12-30


本篇文章给大家谈谈系统接口设计大数据量,以及大数据量接口对接方式对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享系统接口设计大数据量的知识,其中也会对大数据量接口对接方式进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

大数据量的系统的数据库结构如何设计?

1、把你表中经常查询的和不常用的分开几个表,也就是横向切分
2、把不同类型的分成几个表,纵向切分
3、常用联接的建索引
4、服务器放几个硬盘,把数据、日志、索引分盘存放,这样可以提高IO吞吐率
5、用优化器,优化你的查询
6、考虑冗余,这样可以减少连接
7、可以考虑建立统计表,就是实时生成总计表,这样可以避免每次查询都统计一次
mrzxc 等说的好,考虑你的系统,注意负载平衡,查询优化,25 万并不大,可以建一个表,然后按mrzxc 的3 4 5 7 优化。 速度,影响它的因数太多了,且数据量越大越明显。
1、存储 将硬盘分成NTFS格式,NTFS比FAT32快,并看你的数据文件大小,1G以上你可以采用多数据库文件,这样可以将存取负载分散到多个物理硬盘或磁盘阵列上。
2、tempdb tempdb也应该被单独的物理硬盘或磁盘阵列上,建议放在RAID 0上,这样它的性能最高,不要对它设置最大值让它自动增长
3、日志文件 日志文件也应该和数据文件分开在不同的理硬盘或磁盘阵列上,这样也可以提高硬盘I/O性能。
4、分区视图 就是将你的数据水平分割在集群服务器上,它适合大规模OLTP,SQL群集上,如果你数据库不是访问特别大不建议使用。
5、簇索引 你的表一定有个簇索引,在使用簇索引查询的时候,区块查询是最快的,如用between,应为他是物理连续的,你应该尽量减少对它的updaet,应为这可以使它物理不连续。
6、非簇索引 非簇索引与物理顺序无关,设计它时必须有高度的可选择性,可以提高查询速度,但对表update的时候这些非簇索引会影响速度,且占用空间大,如果你愿意用空间和修改时间换取速度可以考虑。
7、索引视图 如果在视图上建立索引,那视图的结果集就会被存储起来,对与特定的查询性能可以提高很多,但同样对update语句时它也会严重减低性能,一般用在数据相对稳定的数据仓库中。
8、维护索引 你在将索引建好后,定期维护是很重要的,用dbcc showcontig来观察页密度、扫描密度等等,及时用dbcc indexdefrag来整理表或视图的索引,在必要的时候用dbcc dbreindex来重建索引可以受到良好的效果。 不论你是用几个表1、2、3点都可以提高一定的性能,5、6、8点你是必须做的,至于4、7点看你的需求,我个人是不建议的。打了半个多小时想是在写论文,希望对你有帮助。

大数据量高并发访问数据库结构的设计

大数据量高并发访问数据库结构的设计
如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能。所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的。
在一个系统分析、设计阶段,因为数据量较小,负荷较低。我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程。
所以在考虑整个系统的流程的时候,我们必须要考虑,在高并发大数据量的访问情况下,我们的系统会不会出现极端的情况。(例如:对外统计系统在7月16日出现的数据异常的情况,并发大数据量的的访问造成,数据库的响应时间不能跟上数据刷新的速度造成。具体情况是:在日期临界时(00:00:00),判断数据库中是否有当前日期的记录,没有则插入一条当前日期的记录。在低并发访问的情况下,不会发生问题,但是当日期临界时的访问量相当大的时候,在做这一判断的时候,会出现多次条件成立,则数据库里会被插入多条当前日期的记录,从而造成数据错误。),数据库的模型确定下来之后,我们有必要做一个系统内数据流向图,分析可能出现的瓶颈。
为了保证数据库的一致性和完整性,在逻辑设计的时候往往会设计过多的表间关联,尽可能的降低数据的冗余。(例如用户表的地区,我们可以把地区另外存放到一个地区表中)如果数据冗余低,数据的完整性容易得到保证,提高了数据吞吐速度,保证了数据的完整性,清楚地表达数据元素之间的关系。而对于多表之间的关联查询(尤其是大数据表)时,其性能将会降低,同时也提高了客户端程序的编程难度,因此,物理设计需折衷考虑,根据业务规则,确定对关联表的数据量大小、数据项的访问频度,对此类数据表频繁的关联查询应适当提高数据冗余设计但增加了表间连接查询的操作,也使得程序的变得复杂,为了提高系统的响应时间,合理的数据冗余也是必要的。设计人员在设计阶段应根据系统操作的类型、频度加以均衡考虑。
另外,最好不要用自增属性字段作为主键与子表关联。不便于系统的迁移和数据恢复。对外统计系统映射关系丢失(******************)。
原来的表格必须可以通过由它分离出去的表格重新构建。使用这个规定的好处是,你可以确保不会在分离的表格中引入多余的列,所有你创建的表格结构都与它们的实际需要一样大。应用这条规定是一个好习惯,不过除非你要处理一个非常大型的数据,否则你将不需要用到它。(例如一个通行证系统,我可以将USERID,USERNAME,USERPASSWORD,单独出来作个表,再把USERID作为其系统接口设计大数据量他表的外键)
表的设计具体注意的问题:
1、数据行的长度不要超过8020字节,如果超过这个长度的话在物理页中这条数据会占用两行从而造成存储碎片,降低查询效率。
2、能够用数字类型的字段尽量选择数字类型而不用字符串类型的(电话号码),这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接回逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
3、对于不可变字符类型char和可变字符类型varchar都是8000字节,char查询快,但是耗存储空间,varchar查询相对慢一些但是节省存储空间。在设计字段的时候可以灵活选择,例如用户名、密码等长度变化不大的字段可以选择CHAR,对于评论等长度变化大的字段可以选择VARCHAR。
4、字段的长度在最大限度的满足可能的需要的前提下,应该尽可能的设得短一些,这样可以提高查询的效率,而且在建立索引的时候也可以减少资源的消耗。
5、基本表及其字段之间的关系, 应尽量满足第三范式。但是,满足第三范式的数据库设计,往往不是最好的设计。为了提高数据库的运行效率,常常需要降低范式标准:适当增加冗余,达到以空间换时间的目的。
6、若两个实体之间存在多对多的关系,则应消除这种关系。消除的办法是,在两者之间增加第三个实体。这样,原来一个多对多的关系,现在变为两个一对多的关系。要将原来两个实体的属性合理地分配到三个实体中去。这里的第三个实体,实质上是一个较复杂的关系,它对应一张基本表。一般来讲,数据库设计工具不能识别多对多的关系,但能处理多对多的关系。
7、主键PK的取值方法,PK是供程序员使用的表间连接工具,可以是一无物理意义的数字串, 由程序自动加1来实现。也可以是有物理意义的字段名或字段名的组合。不过前者比后者好。当PK是字段名的组合时,建议字段的个数不要太多,多了不但索引占用空间大,而且速度也慢。
8、主键与外键在多表中的重复出现, 不属于数据冗余,这个概念必须清楚,事实上有许多人还不清楚。非键字段的重复出现, 才是数据冗余系统接口设计大数据量!而且是一种低级冗余,即重复性的冗余。高级冗余不是字段的重复出现,而是字段的派生出现。
〖例4〗:商品中的“单价、数量、金额”三个字段,“金额”就是由“单价”乘以“数量”派生出来的,它就是冗余,而且是一种高级冗余。冗余的目的是为了提高处理速度。只有低级冗余才会增加数据的不一致性,因为同一数据,可能从不同时间、地点、角色上多次录入。因此,我们提倡高级冗余(派生性冗余),反对低级冗余(重复性冗余)。
9、中间表是存放统计数据的表,它是为数据仓库、输出报表或查询结果而设计的,有时它没有主键与外键(数据仓库除外)。临时表是程序员个人设计的,存放临时记录,为个人所用。基表和中间表由DBA维护,临时表由程序员自己用程序自动维护。
10、防止数据库设计打补丁的方法是“三少原则”
(1) 一个数据库中表的个数越少越好。只有表的个数少了,才能说明系统的E--R图少而精,去掉了重复的多余的实体,形成了对客观世界的高度抽象,进行了系统的数据集成,防止了打补丁式的设计;
(2) 一个表中组合主键的字段个数越少越好。因为主键的作用,一是建主键索引,二是做为子表的外键,所以组合主键的字段个数少了,不仅节省了运行时间,而且节省了索引存储空间;
(3) 一个表中的字段个数越少越好。只有字段的个数少了,才能说明在系统中不存在数据重复,且很少有数据冗余,更重要的是督促读者学会“列变行”,这样就防止了将子表中的字段拉入到主表中去,在主表中留下许多空余的字段。所谓“列变行”,就是将主表中的一部分内容拉出去,另外单独建一个子表。这个方法很简单,有的人就是不习惯、不采纳、不执行。
数据库设计的实用原则是:在数据冗余和处理速度之间找到合适的平衡点。“三少”是一个整体概念,综合观点,不能孤立某一个原则。该原则是相对的,不是绝对的。“三多”原则肯定是错误的。试想:若覆盖系统同样的功能,一百个实体(共一千个属性) 的E--R图,肯定比二百个实体(共二千个属性)的E--R图,要好得多。
提倡“三少”原则,是叫读者学会利用数据库设计技术进行系统的数据集成。数据集成的步骤是将文件系统集成为应用数据库,将应用数据库集成为主题数据库,将主题数据库集成为全局综合数据库。集成的程度越高,数据共享性就越强,信息孤岛现象就越少,整个企业信息系统的全局E—R图中实体的个数、主键的个数、属性的个数就会越少。
提倡“三少”原则的目的,是防止读者利用打补丁技术,不断地对数据库进行增删改,使企业数据库变成了随意设计数据库表的“垃圾堆”,或数据库表的“大杂院”,最后造成数据库中的基本表、代码表、中间表、临时表杂乱无章,不计其数,导致企事业单位的信息系统无法维护而瘫痪。
“三多”原则任何人都可以做到,该原则是“打补丁方法”设计数据库的歪理学说。“三少”原则是少而精的原则,它要求有较高的数据库设计技巧与艺术,不是任何人都能做到的,因为该原则是杜绝用“打补丁方法”设计数据库的理论依据。
11、在给定的系统硬件和系统软件条件下,提高数据库系统的运行效率的办法是:
(1) 在数据库物理设计时,降低范式,增加冗余, 少用触发器, 多用存储过程。
(2) 当计算非常复杂、而且记录条数非常巨大时(例如一千万条),复杂计算要先在数据库外面,以文件系统方式用编程语言计算处理完成之后,最后才入库追加到表中去。
(3) 发现某个表的记录太多,例如超过一千万条,则要对该表进行水平分割。水平分割的做法是,以该表主键PK的某个值为界线,将该表的记录水平分割为两个表。若发现某个表的字段太多,例如超过八十个,则垂直分割该表,将原来的一个表分解为两个表。
(4) 对数据库管理系统DBMS进行系统优化,即优化各种系统参数,如缓冲区个数。
(5) 在使用面向数据的SQL语言进行程序设计时,尽量采取优化算法。
总之,要提高数据库的运行效率,必须从数据库系统级优化、数据库设计级优化、程序实现级优化,这三个层次上同时下功夫。
主键设计:
1、不建议用多个字段做主键,单个表还可以,但是关联关系就会有问题,主键自增是高性能的。
2、一般情况下,如果有两个外键,不建议采用两个外键作为联合住建,另建一个字段作为主键。除非这条记录没有逻辑删除标志,且该表永远只有一条此联合主键的记录。
3、一般而言,一个实体不能既无主键又无外键。在E—R 图中, 处于叶子部位的实体, 可以定义主键,也可以不定义主键(因为它无子孙), 但必须要有外键(因为它有父亲)。
主键与外键的设计,在全局数据库的设计中,占有重要地位。当全局数据库的设计完成以后,有个美国数据库设计专家说:“键,到处都是键,除了键之外,什么也没有”,这就是他的数据库设计经验之谈,也反映了他对信息系统核心(数据模型)的高度抽象思想。因为:主键是实体的高度抽象,主键与、外键的配对,表示实体之间的连接。

求教现在处理大数据量的web开发,框架选择

如何选择Web开发框架
开发框架系统接口设计大数据量的选择系统接口设计大数据量,始终是个仁者见仁、智者见智的事情。尤其是Web层的开发框架,数量非常多,而且各有特色,如系统接口设计大数据量:Struts、WebWork、Spring MVC、Tapestry、JSF、WebPage3.0……等等。
下面先来看看为什么要使用Web开发框架
一 使用框架的必然性
框架,即framework。其实就是某种应用的半成品,把不同应用程序中有共性的一些东西抽取出来,做成一个半成品程序,这样的半成品就是所谓的程序框架。
软件系统发展到今天已经很复杂了,特别是服务器端软件,涉及到的知识,内容,问题太多。在某些方面使用别人成熟的框架,就相当于让别人帮系统接口设计大数据量你完成一些基础工作,你只需要集中精力完成系统的业务逻辑设计。这样每次开发就不用白手起家,而是可以在这个基础上开始搭建。
使用框架的最大好处:减少重复开发工作量、缩短开发时间、降低开发成本。同时还有其它的好处,如:使程序设计更合理、程序运行更稳定等。基于这些原因,基本上现在在开发中,都会选用某些合适的开发框架,来帮助快速高效的开发应用系统。
了解了使用框架的必然性,下面来看看如何选择,当然我们的话题集中在Web层的开发框架。在谈这个问题之前,先来看看我们在Web开发中究竟需要做些什么工作:
二 Web层开发的工作
在J2EE开发中,分层是基本的思想,3层架构或者多层架构早已深入人心,在这里我们就把目光集中到Web层,看看到底Web层开发做了那些工作:
1:数据展示
Web层需要从逻辑层获取需要展示的数据,然后以合理的方式在页面进行展示
2:人机交互
用户需要从界面上输入数据,在界面上进行按钮点击,进而触发事件,标准的事件驱动模型,然后跟后台进行数据交换,出现新的界面。
3:收集数据,调用逻辑层接口
Web层收到用户的事件请求,需要调用相应的逻辑层接口来进行处理,Web层是不会有任何逻辑处理的。调用逻辑层接口,需要传递参数,这时需要收集用户在界面上输入的数据,然后进行组织,组织成为逻辑层接口需要的数据封装形式(通常都是ValueObject)。
4:根据逻辑层的数据来重新展示页面
逻辑层处理完了,需要返回数据或信息到界面上。这个时候Web层需要根据返回的值选择合适的页面,然后展示这些数据或者信息。
从上面可以看出,Web层开发的主要工作集中在展示上,也就是图形用户界面。这一部分是用户直观感受应用程序的窗口,也是用户要求最多的地方,其表现形式也是最丰富的。
三 Web层开发的步骤
下面再来总结一下Web层开发的大致步骤(也就是需要开发人员做的工作):
注意:这里讨论的Web层开发,是不使用任何开发框架时候的开发。
1:写页面Html,到底有哪些数据需要在界面上表现
2:每个数据的具体表现形式,如:有的需要表现成为下拉列表,有的需要表现成为单选按钮等。
3:界面表现形式的逻辑布局,所谓逻辑布局是指某些数据的表现形式应该放在前面,某些应该放在后面;某些放在上面,某些放在下面。如:某个请假申请 的业务,有请假开始时间和结束时间,很明显开始时间的表现就应该排在结束时间的前面。而美工是负责最后页面的美观,一般美工不能动界面的逻辑布局。
4:完成前面3步,页面的表现形式的大致模样就有了,下面需要来做功能性的开发。第一个就是这些表现形式的值的来源,如:下拉列表显示的值从什么地方来。值的来源方式很多,有数据库中来、固定值、某断程序运行的中间结果、前面页面传递过来等等,当然典型的还是来自数据库。
好了,确定了值的来源,开发人员就要写代码来获取这些值,然后把这些值赋值到对应的表现形式里面。
5:还有一些比较特殊,也就是真实操作的是一类值,但是在界面上显示的是另一类值,比如:数据库中有用户编号,到了界面上就得显示用户姓名,但是所 有的操作都是要操作用户编号的。我们把这种情况分做:真实值和表现值,他们有一定的内在联系。这些都是要开发人员去转化和维护的。
6:接下来就应该开发功能性的事件响应了。用户点击了某个按钮或者触发了某个事件,首先是客户端:数据检测、客户端事件处理;然后提交到服务端,服务端要获取到客户端提交的数据,然后调用相应的逻辑层接口来响应。当然如何写逻辑层的实现这里就不去谈论了。
7:逻辑层执行完过后,返回数据和信息到Web层,开发人员还需要写代码去处理,选择哪个页面来显示,如何显示这些数据和信息等。
8:在整个交互的过程中,还必须考虑到如何控制权限,如:某些数据不能显示,某些数据不能编辑等等;同样还需要考虑到消息的配置和国际化等等。这些功能起源于逻辑层,但是实际的控制要到Web层,这些都需要开发人员来控制。
9:完成了上面的开发步骤,页面基本的功能开发就告一段落,接下来开发人员需要考虑页面美观的问题了。大家可能会说:“不是有美工吗,还需要开发人 员干什么?”。事实上美工多半只能出一个静态页面的美化模版,美工对于一推Java代码和Html的混杂物,多半是没有办法的,更不要说还有一些内容是动 态生成的,美工就更不可能搞定了。还是得开发人员上阵,按照美工给的模版,开始添加Css:class、id、style……
10:完成上面的开发,基本页面的开发工作就完成了,最后的一个步骤就是把各个页面有机的组织起来,开发应用程序的整体应用导航框架,通常就是菜单,然后把各个功能页面跟菜单结合起来,形成一个完整的应用。
在这里我们省略了开发期反复的调试过程,仅总结开发的步骤。
四 选择Web开发框架的目的
了解了如果没有框架,我们需要做的工作,这对选择框架有非常大的帮助。
框架,直白点说,就是一个半成品,能够帮我们做一些事情的半成品。
框架的选择,就是看哪个框架最合适,从而减少开发的工作量,提高开发的效率和质量,并有效减少维护的工作量,最终达到节约综合开发成本,获取更多的收益。
五 选择Web开发框架的标准
声明:这里所谈的选择Web开发框架的标准,只是我们的总结和一家之言,并不是放之四海而皆准的真理,请根据您的体会客观的看待我们的总结。
另外:我们这里更多的讨论业务功能性应用程序的Web开发框架。
1:选择能够对我们的开发过程提供更多、更好帮助的Web开发框架
2:Web开发框架的学习一定要简单,上手一定要快,没有什么比使用能得到更深的体会。那些动不动就需要半个月或者一个月学习周期的框架,实在是有些恐怖。
3:一定要能得到很好的技术支持,在应用的过程中,或多或少都会出现这样或者那样的问题,如果不能很快很好的解决,会对整个项目开发带来影响。一定要考虑综合成本,其实这是目前应用开源软件最大的问题,碰到问题除了死肯文档就是查阅源代码,或者是网上搜寻解决的办法,通常一个问题就会导致1-2天的开发停顿,严重的甚至需要一个星期或者更长,一个项目有上这么几次,项目整体的开发成本嗖嗖的就上去了。
4:Web开发框架结合其他技术的能力一定要强,比如:在逻辑层要使用Spring或者Ejb3,那么Web开发框架一定要能很容易,很方便的与它们进行结合。
5:Web开发框架的扩展能力一定要强。在好的框架都有力所不及的地方,这就要求能很容易的扩展Web开发框架的功能,以满足新的业务需要。同时要注意扩展的简单性,如果扩展框架的功能代价非常大,还不如不用呢。
6:Web开发框架最好能提供可视化的开发和配置,可视化开发对开发效率的提高,已经得到业界公认。
7:Web开发框架的设计结构一定要合理,应用程序会基于这个框架,框架设计的不合理会大大影响到整个应用的可扩展性。
8:Web开发框架一定要是运行稳定的,运行效率高的。框架的稳定性和运行效率直接影响到整个系统的稳定性和效率。
9:Web开发框架一定要能很好的结合目前公司的积累。在多年的开发中已有了很多积累,不能因为使用Web开发框架就不能再使用了,那未免有些得不偿失。
10:选择开发框架另外要注意的一点就是:任何开发框架都不可能是十全十美的,也不可能是适应所有的应用场景的,也就是说任何开发框架都有它适用的范围。所以选择的时候要注意判断应用的场景和开发框架的适用性。
转载

如何架构大数据系统 hadoop

大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。

  一、大数据建设思路

  1)数据的获得


大数据产生的根本原因在于感知式系统的广泛使用。随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。

  2)数据的汇集和存储


互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了

数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。 数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。

  3)数据的管理

大数据管理的技术也层出不穷。在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。其中分布式存储与计算受关注度最高。上图是一个图书数据管理系统。

  4)数据的分析

数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。批处理是先存储后处理,而流处理则是直接处理数据。挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。

  5)大数据的价值:决策支持系统

大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。

  6)数据的使用

大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。

二、大数据基本架构

基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。

Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:

  Hadoop体系架构

(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。

(2)Hadoop的核心是MapReduce(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Reduce则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。当处理大数据查询时,MapReduce会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。

(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。Hbase利用MapReduce来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。

(4)Sqoop是为数据的互操作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。

(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。

(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。

  Hadoop核心设计

  Hbase——分布式数据存储系统

Client:使用HBase RPC机制与HMaster和HRegionServer进行通信

Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况

HMaster: 管理用户对表的增删改查操作

HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据

HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table

HStore:HBase存储的核心。由MemStore和StoreFile组成。

HLog:每次用户操作写入Memstore的同时,也会写一份数据到HLog文件

结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:

应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。

数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用**惯,从而改进使用体验。基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。

数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。丰富的数据源是大数据产业发展的前提。数据源在不断拓展,越来越多样化。如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这**降低了数据的价值。

  三、大数据的目标效果

通过大数据的引入和部署,可以达到如下效果:

  1)数据整合

·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;

·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;

·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。

  2)数据质量管控

·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;

·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。

  3)数据共享

·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;

·以实时或准实时的方式将整合或计算好的数据向外系统提供。

  4)数据应用

·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;

·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;

·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。

  四、总结

基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。

在系统设计中,对数据库的设计应考虑哪些设计原则?

数据库是整个软件应用的根基,是软件设计的起点,它起着决定性的质变作用,因此我们必须对数据库设计高度重视起来,培养设计良好数据库的习惯,是一个优秀的软件设计师所必须具备的基本素质条件!
那么我们要做到什么程度才是对的呢?下面就说说数据库设计的原则:
1、数据库设计最起码要占用整个项目开发的40%以上的时间
数据库是需求的直观反应和表现,因此设计时必须要切实符合用户的需求,要多次与用户沟通交流来细化需求,将需求中的要求和每一次的变化都要一一体现在数据库的设计当中。如果需求不明确,就要分析不确定的因素,设计表时就要事先预留出可变通的字段,正所谓“有备无患”。
2、数据库设计不仅仅停留于页面demo的表面
页面内容所需要的字段,在数据库设计中只是一部分,还有系统运转、模块交互、中转数据、表之间的联系等等所需要的字段,因此数据库设计绝对不是简单的基本数据存储,还有逻辑数据存储。
3、数据库设计完成后,项目80%的设计开发在你脑海中就已经完成了
每个字段的设计都是有他必要的意义的,你在设计每一个字段的同时,就应该已经想清楚程序中如何去运用这些字段,多张表的联系在程序中是如何体现的。换句话说,你完成数据库设计后,程序中所有的实现思路和实现方式在你的脑海中就已经考虑过了。如果达不到这种程度,那当进入编码阶段后,才发现要运用的技术或实现的方式数据库无法支持,这时再改动数据库就会很麻烦,会造成一系列不可预测的问题。
4、数据库设计时就要考虑到效率和优化问题
一开始就要分析哪些表会存储较多的数据量,对于数据量较大的表的设计往往是粗粒度的,也会冗余一些必要的字段,已达到尽量用最少的表、最弱的表关系去存储海量的数据。并且在设计表时,一般都会对主键建立聚集索引,含有大数据量的表更是要建立索引以提供查询性能。对于含有计算、数据交互、统计这类需求时,还要考虑是否有必要采用存储过程。
5、添加必要的(冗余)字段
像“创建时间”、“修改时间”、“备注”、“操作用户IP”和一些用于其他需求(如统计)的字段等,在每张表中必须都要有,不是说只有系统中用到的数据才会存到数据库中,一些冗余字段是为了便于日后维护、分析、拓展而添加的,这点是非常重要的,比如黑客攻击,篡改了数据,我们便就可以根据修改时间和操作用户IP来查找定位。
6、设计合理的表关联
若多张表之间的关系复杂,建议采用第三张映射表来关联维护两张表之间的关系,以降低表之间的直接耦合度。若多张表涉及到大数据量的问题,表结构尽量简单,关联也要尽可能避免。
7、设计表时不加主外键等约束性关联,系统编码阶段完成后再添加约束性关联
这样做的目的是有利于团队并行开发,减少编码时所遇到的问题,表之间的关系靠程序来控制。编码完成后再加关联并进行测试。不过也有一些公司的做法是干脆就不加表关联。
8、选择合适的主键生成策略 关于系统接口设计大数据量和大数据量接口对接方式的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 系统接口设计大数据量的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于大数据量接口对接方式、系统接口设计大数据量的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:SpringBoot框架RESTful接口设置跨域允许
下一篇:java随机生成10位数的字符串ID
相关文章

 发表评论

暂时没有评论,来抢沙发吧~