多平台统一管理软件接口,如何实现多平台统一管理软件接口
878
2023-01-01
本文目录一览:
在微服务网关限流算法我们平时开发过程中,一般一个请求都是需要经过多个微服务微服务网关限流算法的, 比如: 请求从A服务流过B服务,如果A服务请求过快,导致B服务响应慢,那么必然会导致系统出现问题。因为,我们就需要有限流操作。
限流微服务网关限流算法的key 生成规则,默认是 PrincipalNameKeyResolver 来实现
限流算法,默认是 RedisRateLimiter 来实现,是令牌桶算法。
在 Spring Cloud Gateway 中默认提供了 RequestRateLimiter 过滤器来实现限流操作。
配置文件中的写法(部分)
配置文件中的写法(部分)
注意⚠️:
这个类需要加上 @Primary 注解。
https://gitee.com/huan1993/spring-cloud-alibaba-parent/tree/master/gateway-redis-limiter
1、 https://docs.spring.io/spring-cloud-gateway/docs/current/reference/html/#the-redis-ratelimiter
高并发系统常用三板斧来保护系统: 缓存 、 降级 和 限流 ,API网关作为所有请求的入口,请求量大,可以通过对并发访问的请求进行限速来保护系统的可用性。
常用的限流算法比如有令牌桶算法,漏桶算法,计数器算法等,在Zuul中我们可以自己去实现限流的功能,Spring Cloud Gateway的出现本身就是用来替代Zuul的,要想替代那肯定得有强大的功能,除了性能上的优势之外,Spring Cloud Gateway还提供了很多新功能,比如限流操作,使用起来非常简单。
目前限流提供了基于Redis的实现,首先引入依赖,
然后就可以以通过KeyResolver来指定限流的Key,比如我们需要根据用户来做限流,IP来做限流等等。
通过exchange对象可以获取到请求信息,这边用了HostName。
通过exchange对象可以获取到请求信息,获取当前请求的用户ID或者用户名,使用这种方式限流,请求路径中必须携带userId参数。
获取请求地址的uri作为限流key。
配置好后就可以进行限流测试了,注意观察redis中的数据。
简述:
Spring Cloud Zuul RateLimit项目Github地址:
https://github.com/marcosbarbero/spring-cloud-zuul-ratelimit
该包实现了在Zuul对每个服务进行限流
微服务开发中有时需要对API做限流保护,防止网络攻击,比如做一个短信验证码API,限制客户端的请求速率能在一定程度上抵御短信轰炸攻击,降低损失。微服务网关是每个请求的必经入口,非常适合做一些API限流、认证之类的操作,本文介绍Zuul如何进行限流操作
个人建议:如果在网关做细粒度的限流,后面微服务业务变化的话网关也要跟着变,而且后面涉及到微服务之间的调用,这个网关限流做不了。所以在网关上不能做细粒度的限流,网关主要为服务器硬件设备的并发处理能力做限流,细粒度的限流还是交给专门的熔断限流微服务去处理,这样利于各微服务之间的解构和各团队的协同开发
1、限流策略
2、可用的实现
Bucket4j实现需要相关的bean @Qualifier("RateLimit"):
3、常见的配置属性
policy的相关属性
4、发生错误如何处理
1、导入依赖
2、启动类标注解
3、配置文件
4、启动后进行访问
由于我们配置的是一秒只允许3个请求,当我们超过时,会抛出过多请求异常
5、自定义Key策略
如果希望自己控制key的策略,可以通过自定义RateLimitKeyGenerator的实现来增加自己的策略逻辑。
实例:
根据请求上的参数来对请求进行限流。比如有一个请求是 http://localhost:9070/api-a//hello2?name=kevin ,对相同的name值进行限流。我们设置了1分钟内,限流10次,那么如果1分钟内,name是kevin的请求超过10次,就会发生限流。
自定义RateLimitKeyGenerator的实现:
到此本文就结束啦!
参考:
通俗的说,流量控制就是控制用户请求的策略,主要包括:权限、限流、流量调度。
权限上一篇已经讲过了,这一篇讲限流,下一篇讲流量调度。
限流是指限制用户调用的频率(QPS/QPM)或者次数。
流量限制,站在用户或者运营的角度看,最直观能感受到的作用是——收费
各大主流开放平台的对外API,一般都有一些免费的额度,可以供个人测试用,一旦想大规模调用,就需要付费购买更大的额度(频率、次数),根据调用次数或者频率进行收费。一旦超过拥有的额度,就会被限制调用。
其实这才是限流最大的用处,只是用户或者运营同学无感,所以不太被大多数人了解。
网关后面是各个服务,各个服务的接口通过网关透出去给用户调用。理论上说,用户的流量是不可预知的,随时可能来一波,一旦流量的峰值超过了服务的承载能力,服务就挂了,比如有大新闻发生时的某浪微博,比如前些年的12306.
所以, 网关必须保证,放过去到达后端服务的流量一定不可以超过服务可以承载的上限 。这个上限,是网关和各个服务协商出来的。
由简到难,限流可以 分为单机限流、单集群限流、全集群限流 。
这里不讨论具体的如漏桶、令牌桶等限流算法,只说概念和思想。
单机限流的思想很简单,就是每个机器的限流值 x 机器数量 = 总的限流值。
举个例子,A用户的QPS限制是100,网关部署了10台机器,那么,每台机器限制10QPS就可以了。
先说好处,这种方法实现起来非常简单,每台机器在本地内存计算qps就可以了,超过阈值就拒流。
不过单机限流的缺陷也十分明显,主要体现在两点:
当网关部署的机器数量发生变化时,每台机器的限流值需要根据机器数调整。现实中,因为扩容、缩容、机器宕机等原因,机器数的变化是常有的事。
单机限流的前提是,每台网关承载的用户的流量是平均的,但是事实上,在某些时间,用户的流量并不是完全平均分布在每台机器上的。
举个例子:
10台机器,每台限qps10,其中3台每台实际qps是15,因为超限导致用户流量被拒。其余7台每台qps是7。这样用户总的qps = 15 * 3 + 7 * 7 = 94. 用户qps并没有超限,但是却有一部分流量被拒了,这样就很有问题。
实际上,单台限流的阈值也会设置的稍微大一些,以抵消流量不均的问题。
因为上面的问题, 单机限流通常作为一种兜底的备用手段,大多数时候用的还是集群限流 。
先来看一个示意图:
相比单机限流,集群限流的计数工作上移到redis集群内进行,解决了单机限流的缺陷。
但是集群限流也不是完美的,因为引入了redis,那么,当网关和redis之间的网络抖动、redis本身故障时,集群限流就失效了,这时候,还是得依靠单机限流进行兜底。
也就是说, 集群限流 + 单机限流配合,才是一个比稳妥的方案 。
接下来我们来思考这样一个问题:大型网关一般都是多机房、多地域部署的,当然,后端的服务也是多机房、多地域部署的,在保护服务这一点来说,集群限流是够用了。但是对用户来说,还是有一些问题:
比如,用户购买的QPS上限是30,我们的网关部署在中国北、中、南三个地域,那么这30QPS怎么分配呢?
平均肯定不行,用户的流量可能是明显不均衡的,比如用户的业务主要集中在中国北方,那么用户的流量大部分都会进入北方的网关,网关如果限制QPS为10的话,用户肯定来投诉。
那每个地域都限制为30行不行?也不行,如果用户的流量比较均匀的分布在各个地域,那么用户购买了30QPS,实际上可能使用了90QPS,这太亏了。
按照解决单机限流流量不均的思路,搞一个公共的redis集群来计数行不行?
也不行,受限于信号传播速度和天朝的广阔疆域,每个流量都计数,肯定不现实,rt太高会导致限流失去意义,带宽成本也会变得极其昂贵,对redis的规格要求也会很高。总之,很贵还解决不了问题。
有一种巧妙的解决办法是:本地集群阶梯计数 + 全集群检查。
还是刚才的例子:
限流阈值时90,那么三个地域各自计数,当本地域的数值达到30时,去其他两个地域取一次对方当前的计数值,三个地域的计数值加起来,如果超了,告诉另外两个地域超了,开始拒流。如果没超,本地QPS每上涨10,重复一次上述的动作。
这样就能有效的减少与redis的交互次数,同时实现了全地域真·集群限流。
当然,这种全地域集群限流,因为rt和阶梯计数间隔的存在,一定是不准的,但是,比单集群限流还是好很多。
当某个用户流量特别大的时候,redis计数就会遇到典型的热点key问题,导致redis集群单节点压力过大, 有两种办法可以解决这个问题:打散和抽样。
打散是指,把热点key加一些后缀,使其变成多个key,从而hash到不通的redis节点上,均摊压力。
比如热点key是abcd,那么打散后,key变成了abcd1、abcd2、abcd3、abcd4。技术时,轮流加1、2、3、4的后缀就可以了。
抽样是指,针对热点key,不是每个每个请求到来时都进行计数,而是进行一个抽样,比如每10个请求记一次数,这样redis的压力就会降低到十分之一。
说着把流量调度的也说完了哈哈,那下一篇再说说监控好了,顺便推一下我现在在用的国产网关:GOKU,来自Eolinker。我觉得比KONG好用,感兴趣的同学可以自行去了解一下。
www.eolinker.com
关于微服务网关限流算法和网关限流实现的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 微服务网关限流算法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于网关限流实现、微服务网关限流算法的信息别忘了在本站进行查找喔。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~