java基础类型源码解析之多角度讲HashMap

网友投稿 236 2023-01-02


java基础类型源码解析之多角度讲HashMap

前言

终于来到比较复杂的HashMap,由于内部的变量,内部类,方法都比较多,没法像ArrayList那样直接平铺开来说,因此准isPGkuj备从几个具体的角度来切入。

桶结构

HashMap的每个存储位置,又叫做一个桶,当一个Key&Value进入map的时候,依据它的hash值分配一个桶来存储。

看一下桶的定义:table就是所谓的桶结构,说白了就是一个节点数组。

transient Node[] table;

transient int size;

节点

HashMap是一个map结构,它不同于Collection结构,不是存储单个对象,而是存储键值对。

因此内部最基本的存储单元是节点:Node。

节点的定义如下:

class Node implements Map.Entry {

final int hash;

final K key;

V value;

Node next;

}

可见节点除了存储key,vaue,hash三个值之外,还有一个next指针,这样一样,多个Node可以形成一个单向列表。这是解决hash冲突的一种方式,如果多个节点被分配到同一个桶,可以组成一个链表。

HashMap内部还有另一种节点类型,叫做TreeNode:

class TreeNode extends LinkedHashMap.Entry {

TreeNode parent; // red-black tree links

TreeNode left;

TreeNode right;

TreeNode prev; // needed to unlink next upon deletion

boolean red;

}

TreeNode是从Node继承的,它可以组成一棵红黑树。为什么还有这个东东呢?上面说过,如果节点的被哈希到同一个桶,那么可能导致链表特别长,这样一来访问效率就会急剧下降。 此时如果key是可比较的(实现了Comparable接口),HashMap就将这个链表转成一棵平衡二叉树,来挽回一些效率。在实际使用中,我们期望这种现象永远不要发生。

有了这个知识,就可以看看HashMap几个相关常量定义了:

static final int TREEIFY_THRESHOLD = 8;

static final int UNTREEIFY_THRESHOLD = 6;

static final int MIN_TREEIFY_CAPACITY = 64;

TREEIFY_THRESHOLD,当某个桶里面的节点数达到这个数量,链表可转换成树;

UNTREEIFY_THRESHOLD,当某个桶里面数低于这数量,树转换回链表;

MIN_TREEIFY_CAPACITY,如果桶数量低于这个数,那么优先扩充桶的数量,而不是将链表转换成树;

put方法:Key&Value

插入接口:

public V put(K key, V value) {

return putVal(hash(key), key, value, false, true);

}

final int hash(Object key) {

int h;

return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);

}

put方法调用了私有方法putVal,不过值得注意的是,key的hash值不是直接用的hashCode,最终的hash=(hashCode右移16)^ hashCode。

在将hash值映射为桶位置的时候,取的是hash值的低位部分,这样如果有一批key的仅高位部分不一致,就会聚集的同一个桶里面。(如果桶数量比较少,key是Float类型,且是连续的整数,就会出现这种case)。

执行插入的过程:

V putVal(int hash, K key, V value, boolean onlyIfAbsent,

boolean evict) {

Node[] tab; Node p; int n, i;

if ((tab = table) == null || (n = tab.length) == 0)

n = (tab = resize()).length;

//代码段1

if ((p = tab[i = (n - 1) & hash]) == null)

tab[i] = newNode(hash, key, value, null);

else {

Node e; K k;

//代码段2

if (p.hash == hash &&

((k = p.key) == key || (key != null && key.equals(k))))

e = p;

//代码段3

else if (p instanceof TreeNode)

e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);

else {

//代码段4

for (int binCount = 0; ; ++binCount) {

//代码段4.1

if ((e = p.next) == null) {

p.next = newNode(hash, key, value, null);

if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st

treeifyBin(tab, hash);

break;

}

//代码段4.2

if (e.hash == hash &&

((k = e.key) == key || (key != null && key.equals(k))))

break;

p = e;

}

}

//代码段5

if (e != null) { // existing mapping for key

V oldValue = e.value;

if (!onlyIfAbsent || oldValue == null)

e.value = value;

afterNodeAccess(e);

return oldValue;

}

}

//代码段6

++modCount;

if (++size > threshold)

resize();

afterNodeInsertion(evict);

return null;

}

最开始的一段处理桶数组还没有分配的情况;

代码段1: i = (n - 1) & hash,计算hash对应的桶位置,因为n是2的冥次,这是一种高效的取模操作;如果这个位置是空的,那么直接创建Node放进去就OK了;否则这个冲突位置的节点记为P;

代码段2:如果节点P的key和传入的key相等,那么说明新的value要放入一个现有节点里面,记为e;

代码段3:如果节点P是一棵树,那么将key&value插入到这个棵树里面;

代码段4:P是链表头,或是单独一个节点,两种情况,都可以通过扫描链表的方式来做;

代码段4.1:如果链表到了尾部,插入一个新节点,同时如果有必要,将链表转成树;

代码段4.2:如果链表中找到了相等的key,和代码段2一样处理;

代码段5:将value存入节点e

代码段6:如果size超过某个特定值,要调整桶的数量,关于resize的策略在下文会讲

remove方法

了解了put方法,remove方法就容易了,直接讲解私有方法removeNode吧。

public V remove(Object key) {

Node e;

return (e = removeNode(hash(key), key, null, false, true)) == null ?

null : e.value;

}

Node removeNode(int hash, Object key, Object value,

boolean matchValue, boolean movable) {

Node[] tab; Node p; int n, index;

//代码段1

if ((tab = table) != null && (n = tab.length) > 0 &&

(p = tab[index = (n - 1) & hash]) != null) {

//代码段2:

Node node = null, e; K k; V v;

if (p.hash == hash &&

((k = p.key) == key || (key != null && key.equals(k))))

node = p;

//代码段3:

else if ((e = p.next) != null) {

//代码段3.1:

if (p instanceof TreeNode)

node = ((TreeNode)p).getTreeNode(hash, key);

else {

//代码段3.2:

do {

if (e.hash == hash &&

((k = e.key) == key ||

(key != null && key.equals(k)))) {

node = e;

break;

}

p = e;

} while ((e = e.next) != null);

}

}

//代码段4:

if (node != null && (!matchValue || (v = node.value) == value ||

(value != null && value.equals(v)))) {

//代码段4.1:

if (node instanceof TreeNode)

((TreeNode)node).removeTreeNode(this, tab, movable);

//代码段4.2:

else if (node == p)

tab[index] = node.next;

//代码段4.3:

else

p.next = node.next;

++modCount;

--size;

afterNodeRemoval(node);

return node;

}

}

return null;

}

代码段1:这个if条件在判断hash对应的桶是否空的,如果是话,那么map里面肯定就没有这个key;否则第一个节点记为P;

代码段2:如果P节点的key与参数key相等,找到了要移除的节点,记为node;

代码段3:扫描桶里面的其他节点

代码段3.1:如果桶里面这是一颗树,执行树的查找逻辑;

代码段3.2: 执行链表扫描逻辑;

代码段4:如果找到了node,那么尝试删除它

代码段4.1:如果是树节点,执行树的节点删除逻辑;

代码段4.2:node是链表头结点,将node.next放入桶就ok;

代码段4.3:删除链表中间节点

rehash

rehash就是重新分配桶,并将原有的节点重新hash到新的桶位置。

先看两个和桶的数量相关的成员变量

final float loadFactor;

int threshold;

loadFactor 负载因子,是创建HashMap时设定的一个值,即map所包含的条目数量与桶数量的比值上限;一旦map的负载达到这个值,就需要扩展桶的数量;

threshold map的数量达到这个值,就需要扩展桶,它的值基本上等于桶的容量*loadhttp://Factor,我感觉就是一个缓存值,加快相关的操作,不用每次都去计算;

桶的扩展策略,见下面的函数,如果需要的容量是cap,真实扩展的容量是大于cap的一个2的冥次。

这样依赖,每次扩展,增加的容量都是2的倍数。

static final int tableSizeFor(int cap) {

int n = cap - 1;

n |= n >>> 1;

n |= n >>> 2;

n |= n >>> 4;

n |= n >>> 8;

n |= n >>> 16;

return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;

}

这是具体的扩展逻辑

Node[] resize() {

//此处省略了计算newCap的逻辑

Node[] newTab = (Node[])new Node[newCap];

table = newTab;

if (oldTab != null) {

for (int j = 0; j < oldCap; ++j) {

Node e;

if ((e = oldTab[j]) != null) {

oldTab[j] = null;

//分支1

if (e.next == null)

newTab[e.hash & (newCap - 1)] = e;

//分支2

else if (e instanceof TreeNode)

((TreeNode)e).split(this, newTab, j, oldCap);

//分支3

else { // preserve order

//此处省略了链表拆分逻辑

}

}

}

return newTab;

}

首先分配新的桶数组;

扫描旧的桶,将元素迁移过来;

分支1:桶里面只有一个新的节点,那么放入到新桶对应的位置即可;

分支2:桶里面是一棵树,执行树的拆分逻辑

分支3:桶里面是一个链表,执行链表的拆分逻辑;

由于新桶的数量是旧桶的2的倍数,所以每个旧桶都能对应2个或更多的新桶,互不干扰。 所以上面的迁移逻辑,并不需要检查新桶里面是否有节点。

可见,rehash的代价是很大的,最好在初始化的时候,能够设定一个合适的容量,避免rehash。

最后,虽然上面的代码没有体现,在HashMap的生命周期内,桶的数量只会增加,不会减少。

迭代器

所有迭代器的核心就是这个HashIterator

abstract class HashIterator {

Node next; // next entry to return

Node current; // current entry

int expectedModCount; // for fast-fail

int index; // current slot

final Node nextNode() {

Node[] t;

Node e = next;

if (modCount != expectedModCount)

throw new ConcurrentModificationException();

if (e == null)

throw new NoSuchElementException();

if ((next = (current = e).next) == null && (t = table) != null) {

do {} while (index < t.length && (next = t[index++]) == null);

}

return e;

}

}

简单起见,只保留了next部分的代码。原理很简单,next指向下一个节点,肯定处在某个桶当中(桶的位置是index)。那么如果同一个桶还有其他节点,那么一定可以顺着next.next来找到,无论这是一个链表还是一棵树。否则扫描下一个桶。

有了上面的节点迭代器,其他用户可见的迭代器都是通过它来实现的。

final class KeyIterator extends HashIterator

implements Iterator {

public final K next() { return nextNode().key; }

}

final class ValueIterator extends HashIterator

implements Iterator {

public final V next() { return nextNode().value; }

}

final class EntryIterator extends HashIterator

implements Iterator> {

public final Map.Entry next() { return nextNode(); }

}

视图

KeySet的部分代码:这并不是一个独立的Set,而是一个视图,它的接口内部访问的都是HashMap的数据。

final class KeySet extends AbstractSet {

public final int size() { return size; }

public final void clear() { HashMap.this.clear(); }

public final Iterator iterator() { return new KeyIterator(); }

public final boolean contains(Object o) { return containsKey(o); }

public final boolean remove(Object key) {

return removeNode(hash(key), key, null, false, true) != null;

}

}

EntrySet、Values和KeySet也是类似的,不再赘述。

要点总结

1、key&value存储在节点中;

2、节点有可能是链表节点,也有可能是树节点;

3、依据key哈希值给节点分配桶;

4、如果桶里面有多个节点,那么要么形成一个链表,要么形成一颗树;

5、isPGkuj装载因子限制的了节点和桶的数量比例,必要时会扩展桶的数量;

6、桶数量必然是2的冥次,重新分配桶的过程叫做rehash,这是很昂贵的操作;

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:微服务服务网关(微服务统一网关)
下一篇:国内的接口测试工具(国内的接口测试工具有哪些)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~