秒杀系统接口设计(秒杀系统架构)

网友投稿 498 2023-01-02


本篇文章给大家谈谈秒杀系统接口设计,以及秒杀系统架构对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享秒杀系统接口设计的知识,其中也会对秒杀系统架构进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

如何设计一个秒杀系统?要考虑什么

(纯分析一波,如果有什么方面没考虑到,希望各位大咖见谅,并且给我提点哦~ 可以继续完善) 首先, 在购票方面, 最主要的一点是要防止黄牛囤积大量票, 第二步在防止黄牛用自己的账号随便买票, 第三步才考虑完全杜绝黄牛为其他人代购票。 首先说图片验证码, 图片验证码的作用就是用在最后一步的, 至于为什么不是用于防止黄牛大量囤积或者用于防止黄牛用自己的账号买票, 因为图片验证码总有一个概率通过,根据现在的验证码规则, 在8个图中选择1~3个图,那么随机选一个选中的概率就是1/(8C1+8C2+8C3)=1/92≈1.086% (应用一下中学排列组合知识,C 表示组合数),也就是说, 黄牛买100次票就会有一次抢到票, 这对于一般用户来说这是没用的, 一般的用户就算有这个软件, 100次才有一次那需要的次数也太多了,但对于大量囤积票来说,这就足够了,一个机器人100趟车只能抢到一次,开几十几百个机器人抢就是了,有钱想囤积多少都可以。而防止黄牛拿自己的账号买票也是不行的,黄牛人工操作,你总没办法吧,手工买票,就像以前的黄牛都是到火车站排队去买票一样。 那么对于这三点来说,我们应该怎么样设计才能防止呢,一点一点来说: 一、 如何防止黄牛大量囤积票 这就是还是要从概率的方面考虑。任何验证策略总是有一个成功概率的,那么只要有大量的基数,那就总是能达到预期的成功数量。那么最直接的应对方式就出现了,就是单客户端单账号单个手机号在一定的时间段。(如一个小时或者一天内查询的次数不能超过一个限制,这个限制可以考虑根据时间段的长度来决定限额大小,一般的应用这么做是没必要的,但是对于12306绝对是非常有用的功能)限额,这是最不容易被用户感知到的功能,也是我最推荐的方案,最好能润物细无声的让大量刷票的用户做出一定的限制,让普通用户有一个好好买票的机会。二、 如何防止黄牛用自己的账号买票囤着 这一方面来说,验证码也是毫无用处的。因为,人工买票也是一个很好地囤机票手段。在农村招一批年轻的小伙子,找一个黑网吧,经过半天的培训,做抢票的工作肯定毫无问题了。那就一整天人工刷飘来囤积,然后有客户没票着急买的时候,加价20%~40%卖给他,找个人少的时间(以前可以凌晨),一个账户退票,客户账户再买,这就完成了票的转移。那么这个防御的方法就是实名买票,这还不够,还要做: 一个账户不能购买的来回去见过多(比如限制15个始发站、终点站组合),或者可以要设置家乡地和工作地,买去这两地或从这里出发的车票会比一定客户容易(春运期间回家肯定是头等大事,别的那就放放再说吧,总不可能你出去旅游玩比人家回家看望父母要重要吧)卖了的票退票不是立马就可以买,而是所有退票都统一时间处理,比如3天前退的票都在发车3天前的某一个时刻放出,3天内的票就当日或次日12:00放出,这样黄牛就没法偷偷地把票转移到客户手里三、如何防止黄牛为其他人买票 好吧,这是最麻烦的一步,换句话说,也就是如何让多个用户能比较公平的抢票,不会因为有了什么工具就比人家容易抢票,甚至不会因为手比较慢就不容易有票(当然这个很难) 到了这里,黄牛囤积的概率应该已经大大减小了,如果能把这一步页=也禁止了,那么黄牛应该就只能回到最原始的方案(也就是带着乘客从出口往里跑,硬生生摸进去)。到这里图片验证码才开始登场,这也是秒杀方案要考虑的地方。图片验证码的作用就是,防止机器能在开抢0.1s 之内就买到票了,而普通用户要2~4s,如果机器不能快速识别图片验证码,那么所有人的反应速度都在4~10s 左右,这就公平了。 那么我们有没有什么代替验证码的方案,也能让机器出局,大家都比较公平呢? 接下来就是脑洞大开的时候: 既然要公平,那么可不可以这样考虑,一批车票不一次性放出来,而是考虑在一个小时内分15次放出来,每次都是一个小的"抽售",在这 4min 内,只要申请一下,在放票的时候就可以参与抽奖,抽中了就获得了票,就有 45min 的时间锁定着票。在一个小时放票时间没抢的票就继续按照现有逻辑呗~大量买票的用户可能就是那么几个,有少数是经常出去玩的用户,那剩下的呢?有一些是黄牛,还有一些是去哪儿等等之类的网站吧(因为很多时候12306没票,在去哪儿就有),那么审查一些这样的用户,对其中黄牛可以采用严格的验证策略(这是一个烟雾弹,这些采用了严格的策略又不提示,这样可以让他们以为整个网站都很严格,可以为等多优化争取到时间)开放第三方接口,允许其他平台登录了查询(而不是抓取),允许登陆后预约票,这样可以减轻很多开发压力和舆论压力,现在这么多购票软件和购票浏览器,一下都给弄死了,这得引起多大的反弹,既然这样,那就给个接口引导这些 app 浏览器什么的转型呗,给个生路,大小都好过年。

高并发,你真的理解透彻了吗?


高并发秒杀系统接口设计,几乎是每个程序员都想拥有的经验。原因很简单秒杀系统接口设计:随着流量变大,会遇到各种各样的技术问题,比如接口响应超时、CPU load升高、GC频繁、死锁、大数据量存储等等,这些问题能推动我们在技术深度上不断精进。

在过往的面试中,如果候选人做过高并发的项目,我通常会让对方谈谈对于高并发的理解,但是能系统性地回答好此问题的人并不多。

大概分成这样几类秒杀系统接口设计

1、对数据化的指标没有概念 :不清楚选择什么样的指标来衡量高并发系统?分不清并发量和QPS,甚至不知道自己系统的总用户量、活跃用户量,平峰和高峰时的QPS和TPS等关键数据。

3、理解片面,把高并发设计等同于性能优化 :大谈并发编程、多级缓存、异步化、水平扩容,却忽视高可用设计、服务治理和运维保障。

4、掌握大方案,却忽视最基本的东西 :能讲清楚垂直分层、水平分区、缓存等大思路,却没意识去分析数据结构是否合理,算法是否高效,没想过从最根本的IO和计算两个维度去做细节优化。

这篇文章,我想结合自己的高并发项目经验,系统性地总结下高并发需要掌握的知识和实践思路,希望对你有所帮助。内容分成以下3个部分:


高并发意味着大流量,需要运用技术手段抵抗流量的冲击,这些手段好比操作流量,能让流量更平稳地被系统所处理,带给用户更好的体验。

我们常见的高并发场景有:淘宝的双11、春运时的抢票、微博大V的热点新闻等。除了这些典型事情,每秒几十万请求的秒杀系统、每天千万级的订单系统、每天亿级日活的信息流系统等,都可以归为高并发。

很显然,上面谈到的高并发场景,并发量各不相同, 那到底多大并发才算高并发呢?

1、不能只看数字,要看具体的业务场景。不能说10W QPS的秒杀是高并发,而1W QPS的信息流就不是高并发。信息流场景涉及复杂的推荐模型和各种人工策略,它的业务逻辑可能比秒杀场景复杂10倍不止。因此,不在同一个维度,没有任何比较意义。

2、业务都是从0到1做起来的,并发量和QPS只是参考指标,最重要的是:在业务量逐渐变成原来的10倍、100倍的过程中,你是否用到了高并发的处理方法去演进你的系统,从架构设计、编码实现、甚至产品方案等维度去预防和解决高并发引起的问题?而不是一味的升级硬件、加机器做水平扩展。

此外,各个高并发场景的业务特点完全不同:有读多写少的信息流场景、有读多写多的交易场景, 那是否有通用的技术方案解决不同场景的高并发问题呢?

我觉得大的思路可以借鉴,别人的方案也可以参考,但是真正落地过程中,细节上还会有无数的坑。另外,由于软硬件环境、技术栈、以及产品逻辑都没法做到完全一致,这些都会导致同样的业务场景,就算用相同的技术方案也会面临不同的问题,这些坑还得一个个趟。

因此,这篇文章我会将重点放在基础知识、通用思路、和我曾经实践过的有效经验上,希望让你对高并发有更深的理解。


先搞清楚高并发系统设计的目标,在此基础上再讨论设计方案和实践经验才有意义和针对性。

高并发绝不意味着只追求高性能,这是很多人片面的理解。从宏观角度看,高并发系统设计的目标有三个:高性能、高可用,以及高可扩展。

1、高性能:性能体现了系统的并行处理能力,在有限的硬件投入下,提高性能意味着节省成本。同时,性能也反映了用户体验,响应时间分别是100毫秒和1秒,给用户的感受是完全不同的。

2、高可用:表示系统可以正常服务的时间。一个全年不停机、无故障;另一个隔三差五出线上事故、宕机,用户肯定选择前者。另外,如果系统只能做到90%可用,也会大大拖累业务。

3、高扩展:表示系统的扩展能力,流量高峰时能否在短时间内完成扩容,更平稳地承接峰值流量,比如双11活动、明星离婚等热点事件。

这3个目标是需要通盘考虑的,因为它们互相关联、甚至也会相互影响。

比如说:考虑系统的扩展能力,你会将服务设计成无状态的,这种集群设计保证了高扩展性,其实也间接提升了系统的性能和可用性。

再比如说:为了保证可用性,通常会对服务接口进行超时设置,以防大量线程阻塞在慢请求上造成系统雪崩,那超时时间设置成多少合理呢?一般,我们会参考依赖服务的性能表现进行设置。

再从微观角度来看,高性能、高可用和高扩展又有哪些具体的指标来衡量?为什么会选择这些指标呢?

2.2.1 性能指标

通过性能指标可以度量目前存在的性能问题,同时作为性能优化的评估依据。一般来说,会采用一段时间内的接口响应时间作为指标。

1、平均响应时间:最常用,但是缺陷很明显,对于慢请求不敏感。比如1万次请求,其中9900次是1ms,100次是100ms,则平均响应时间为1.99ms,虽然平均耗时仅增加了0.99ms,但是1%请求的响应时间已经增加了100倍。

2、TP90、TP99等分位值:将响应时间按照从小到大排序,TP90表示排在第90分位的响应时间, 分位值越大,对慢请求越敏感。

3、吞吐量:和响应时间呈反比,比如响应时间是1ms,则吞吐量为每秒1000次。

通常,设定性能目标时会兼顾吞吐量和响应时间,比如这样表述:在每秒1万次请求下,AVG控制在50ms以下,TP99控制在100ms以下。对于高并发系统,AVG和TP分位值必须同时要考虑。

另外,从用户体验角度来看,200毫秒被认为是第一个分界点,用户感觉不到延迟,1秒是第二个分界点,用户能感受到延迟,但是可以接受。

因此,对于一个 健康 的高并发系统,TP99应该控制在200毫秒以内,TP999或者TP9999应该控制在1秒以内。

2.2.2 可用性指标

高可用性是指系统具有较高的无故障运行能力,可用性 = 正常运行时间 / 系统总运行时间,一般使用几个9来描述系统的可用性。

对于高并发系统来说,最基本的要求是:保证3个9或者4个9。原因很简单,如果你只能做到2个9,意味着有1%的故障时间,像一些大公司每年动辄千亿以上的GMV或者收入,1%就是10亿级别的业务影响。

2.2.3 可扩展性指标

面对突发流量,不可能临时改造架构,最快的方式就是增加机器来线性提高系统的处理能力。

对于业务集群或者基础组件来说,扩展性 = 性能提升比例 / 机器增加比例,理想的扩展能力是:资源增加几倍,性能提升几倍。通常来说,扩展能力要维持在70%以上。

但是从高并发系统的整体架构角度来看,扩展的目标不仅仅是把服务设计成无状态就行了,因为当流量增加10倍,业务服务可以快速扩容10倍,但是数据库可能就成为了新的瓶颈。

像MySQL这种有状态的存储服务通常是扩展的技术难点,如果架构上没提前做好规划(垂直和水平拆分),就会涉及到大量数据的迁移。

因此,高扩展性需要考虑:服务集群、数据库、缓存和消息队列等中间件、负载均衡、带宽、依赖的第三方等,当并发达到某一个量级后,上述每个因素都可能成为扩展的瓶颈点。

了解了高并发设计的3大目标后,再系统性总结下高并发的设计方案,会从以下两部分展开:先总结下通用的设计方法,然后再围绕高性能、高可用、高扩展分别给出具体的实践方案。

通用的设计方法主要是从「纵向」和「横向」两个维度出发,俗称高并发处理的两板斧:纵向扩展和横向扩展。

3.1.1 纵向扩展(scale-up)

它的目标是提升单机的处理能力,方案又包括:

1、提升单机的硬件性能:通过增加内存、 CPU核数、存储容量、或者将磁盘 升级成SSD 等堆硬件的方式来提升。

2、提升单机的软件性能:使用缓存减少IO次数,使用并发或者异步的方式增加吞吐量。

3.1.2 横向扩展(scale-out)

因为单机性能总会存在极限,所以最终还需要引入横向扩展,通过集群部署以进一步提高并发处理能力,又包括以下2个方向:

1、做好分层架构:这是横向扩展的提前,因为高并发系统往往业务复杂,通过分层处理可以简化复杂问题,更容易做到横向扩展。

上面这种图是互联网最常见的分层架构,当然真实的高并发系统架构会在此基础上进一步完善。比如会做动静分离并引入CDN,反向代理层可以是LVS+Nginx,Web层可以是统一的API网关,业务服务层可进一步按垂直业务做微服务化,存储层可以是各种异构数据库。

2、各层进行水平扩展:无状态水平扩容,有状态做分片路由。业务集群通常能设计成无状态的,而数据库和缓存往往是有状态的,因此需要设计分区键做好存储分片,当然也可以通过主从同步、读写分离的方案提升读性能。

下面再结合我的个人经验,针对高性能、高可用、高扩展3个方面,总结下可落地的实践方案。

3.2.1 高性能的实践方案

1、集群部署,通过负载均衡减轻单机压力。

2、多级缓存,包括静态数据使用CDN、本地缓存、分布式缓存等,以及对缓存场景中的热点key、缓存穿透、缓存并发、数据一致性等问题的处理。

3、分库分表和索引优化,以及借助搜索引擎解决复杂查询问题。

4、考虑NoSQL数据库的使用,比如HBase、TiDB等,但是团队必须熟悉这些组件,且有较强的运维能力。

5、异步化,将次要流程通过多线程、MQ、甚至延时任务进行异步处理。

6、限流,需要先考虑业务是否允许限流(比如秒杀场景是允许的),包括前端限流、Nginx接入层的限流、服务端的限流。

7、对流量进行 削峰填谷 ,通过 MQ承接流量。

8、并发处理,通过多线程将串行逻辑并行化。

9、预计算,比如抢红包场景,可以提前计算好红包金额缓存起来,发红包时直接使用即可。

10、 缓存预热 ,通过异步 任务 提前 预热数据到本地缓存或者分布式缓存中。

11、减少IO次数,比如数据库和缓存的批量读写、RPC的批量接口支持、或者通过冗余数据的方式干掉RPC调用。

12、减少IO时的数据包大小,包括采用轻量级的通信协议、合适的数据结构、去掉接口中的多余字段、减少缓存key的大小、压缩缓存value等。

13、程序逻辑优化,比如将大概率阻断执行流程的判断逻辑前置、For循环的计算逻辑优化,或者采用更高效的算法。

14、各种池化技术的使用和池大小的设置,包括HTTP请求池、线程池(考虑CPU密集型还是IO密集型设置核心参数)、数据库和Redis连接池等。

15、JVM优化,包括新生代和老年代的大小、GC算法的选择等,尽可能减少GC频率和耗时。

16、锁选择,读多写少的场景用乐观锁,或者考虑通过分段锁的方式减少锁冲突。

上述方案无外乎从计算和 IO 两个维度考虑所有可能的优化点,需要有配套的监控系统实时了解当前的性能表现,并支撑你进行性能瓶颈分析,然后再遵循二八原则,抓主要矛盾进行优化。

3.2.2 高可用的实践方案

1、对等节点的故障转移,Nginx和服务治理框架均支持一个节点失败后访问另一个节点。

2、非对等节点的故障转移,通过心跳检测并实施主备切换(比如redis的哨兵模式或者集群模式、MySQL的主从切换等)。

3、接口层面的超时设置、重试策略和幂等设计。

4、降级处理:保证核心服务,牺牲非核心服务,必要时进行熔断;或者核心链路出问题时,有备选链路。

5、限流处理:对超过系统处理能力的请求直接拒绝或者返回错误码。

6、MQ场景的消息可靠性保证,包括producer端的重试机制、broker侧的持久化、consumer端的ack机制等。

7、灰度发布,能支持按机器维度进行小流量部署,观察系统日志和业务指标,等运行平稳后再推全量。

8、监控报警:全方位的监控体系,包括最基础的CPU、内存、磁盘、网络的监控,以及Web服务器、JVM、数据库、各类中间件的监控和业务指标的监控。

9、灾备演练:类似当前的“混沌工程”,对系统进行一些破坏性手段,观察局部故障是否会引起可用性问题。

高可用的方案主要从冗余、取舍、系统运维3个方向考虑,同时需要有配套的值班机制和故障处理流程,当出现线上问题时,可及时跟进处理。

3.2.3 高扩展的实践方案

1、合理的分层架构:比如上面谈到的互联网最常见的分层架构,另外还能进一步按照数据访问层、业务逻辑层对微服务做更细粒度的分层(但是需要评估性能,会存在网络多一跳的情况)。

2、存储层的拆分:按照业务维度做垂直拆分、按照数据特征维度进一步做水平拆分(分库分表)。

3、业务层的拆分:最常见的是按照业务维度拆(比如电商场景的商品服务、订单服务等),也可以按照核心接口和非核心接口拆,还可以按照请求源拆(比如To C和To B,APP和H5 )。


高并发确实是一个复杂且系统性的问题,由于篇幅有限,诸如分布式Trace、全链路压测、柔性事务都是要考虑的技术点。另外,如果业务场景不同,高并发的落地方案也会存在差异,但是总体的设计思路和可借鉴的方案基本类似。

高并发设计同样要秉承架构设计的3个原则:简单、合适和演进。"过早的优化是万恶之源",不能脱离业务的实际情况,更不要过度设计,合适的方案就是最完美的。

作者简介:985硕士,前亚马逊工程师,现大厂技术管理者。

京东活动系统--亿级流量架构应对之术

京东活动系统 是一个可在线编辑、实时编辑更新和发布新活动,并对外提供页面访问服务的系统。其高时效性、灵活性等特征,极受青睐,已发展成京东几个重要流量入口之一。近几次大促,系统所承载的pv已经达到数亿级。随着京东业务的高速发展,京东活动系统的压力会越来越大。急需要一个更高效,稳定的系统架构,来支持业务的高速发展。本文主要对活动页面浏览方面的性能,进行探讨。

活动页面浏览性能提升的难点:

1. 活动与活动之间差异很大,不像商品页有固定的模式。每个页面能抽取的公共部分有限,可复用性差。

2. 活动页面内容多样,业务繁多。依赖大量外部业务接口,数据很难做到闭环。外部接口的性能,以及稳定性,严重制约了活动页的渲染速度、稳定性。

经过多年在该系统下的开发实践,提出“页面渲染、浏览异步化”的思想,并以此为指导,对该系统进行架构升级改造。通过近几个月的运行,各方面性能都有显著提升。在分享"新架构"之前,先看看我们现有web系统的架构现状。

以京东活动系统架构的演变为例,这里没有画出具体的业务逻辑,只是简单的描述下架构:
2.第二步,一般是在消耗性能的地方加缓存,这里对部分查库操作加redis缓存
3.对页面进行整页redis缓存:由于活动页面内容繁多,渲染一次页面的成本是很高。这里可以考虑把渲染好的活动内容整页缓存起来,下次请求到来时,如果缓存中有值,直接获取缓存返回。
以上是系统应用服务层面架构演进的,简单示意。为了减少应用服务器的压力,可以在应用服务器前面,加cdn和nginx的proxy_caxhe,降低回源率。
4.整体架构(老)

除了前3步讲的“浏览服务”,老架构还做了其他两个大的优化:“接口服务”、静态服务
1.访问请求,首先到达浏览服务,把整个页面框架返回给浏览器(有cdn、nginx、redis等各级缓存)。

2.对于实时数据(如秒杀)、个性化数据(如登陆、个人坐标),采用前端实时接口调用,前端接口服务。

3.静态服务:静态资源分离,所有静态js、css访问静态服务。

要点:浏览服务、接口服务分离。页面固定不变部分走浏览服务,实时变化、个性化采用前端接口服务实现。

接口服务:分两类,直接读redis缓存、调用外部接口。这里可以对直接读redis的接口采用nginx+lua进行优化( openresty ),不做详细讲解。 本次分享主要对“浏览服务”架构

在讲新架构之前先看看新老架构下的新能对比

击穿cdn缓存、nginx缓存,回源到应用服务器的流量大约为20%-40%之间,这里的性能对比,只针对回源到应用服务器的部分。

2015双十一, 浏览方法tp99如下:(物理机)
Tp99  1000ms左右,且抖动幅度很大,内存使用近70%,cpu 45%左右。

1000ms内没有缓存,有阻塞甚至挂掉的风险。

2.新架构浏览服务新能

本次2016 618采用新架构支持,浏览tp99如下(分app端活动和pc端活动):

移动活动浏览tp99稳定在8ms, pc活动浏览tp99 稳定在15ms左右。全天几乎一条直线,没有性能抖动。

新架构支持,服务器(docker)cpu性能如下

cpu消耗一直平稳在1%,几乎没有抖动。

对比结果:新架构tp99从1000ms降低到 15ms,cpu消耗从45%降低到1%,新架构性能得到质的提升。

why!!!

下面我们就来揭开新架构的面纱。

1.  页面浏览,页面渲染 异步化

再来看之前的浏览服务架构,20%-40%的页面请求会重新渲染页面,渲染需要重新计算、查询、创建对象等导致 cpu、内存消耗增加,tp99性能下降。

如果能保证每次请求都能获取到redis整页缓存,这些性能问题就都不存在了。

即:页面浏览,与页面渲染 异步。

理想情况下,如果页面数据变动可以通过 手动触发渲染(页面发布新内容)、外部数据变化通过监听mq 自动触发渲染。

但是有些外部接口不支持mq、或者无法使用mq,比如活动页面置入的某个商品,这个商品名称变化。

为了解决这个问题,view工程每隔指定时间,向engine发起重新渲染请求-最新内容放入redis。下一次请求到来时即可获取到新内容。由于活动很多,也不能确定哪些活动在被访问,所以不建议使用timer。通过加一个缓存key来实现,处理逻辑如下:

好处就是,只对有访问的活动定时重新发起渲染。

  整理架构(不包含业务):

 view工程职责 :

  a.直接从缓存或者硬盘中获取静态html返回,如果没有返回错误页面。(文件系统的存取性能比较低,超过   100ms级别,这里没有使用)

  b.根据缓存key2是否过期,判断是否向engine重新发起渲染。(如果,你的项目外面接口都支持mq,这个      功能就不需要了)
  engine工程职责 :渲染活动页面,把结果放到 硬盘、redis。
  publish工程、mq 职责 :页面发生变化,向engine重新发起渲染。 具体的页面逻辑,这里不做讲解
Engine工程的工作 就是当页面内容发生变化时,重新渲染页面,并将整页内容放到redis,或者推送到硬盘。
View工程的工作,就是根据链接从redis中获取页面内容返回。

3.view 工程架构 ( 硬盘  版)

 

两个版本对比

a.Redis版

优点:接入简单、 性能好,尤其是在大量页面情况下,没有性能抖动 。单个docker tps达到 700。

缺点:严重依赖京东redis服务,如果redis服务出现问题,所有页面都无法访问。

b.硬盘版

优点:不依赖任何其他外部服务,只要应用服务不挂、网络正常 就可以对外稳定服务。

在页面数量不大的情况下,性能优越。单个docker tps达到 2000。

缺点:在页面数据量大的情况下(系统的所有活动页有xx个G左右),磁盘io消耗增加(这里采用的java io,如果采用nginx+lua,io消耗应该会控制在10%以内)。

解决方案:

a. 对所有页面访问和存储 采用url hash方式,所有页面均匀分配到各个应用服务器上。

b. 采用nginx+lua  利用nginx的异步io,代替java io。

现在通过nginx+lua做应用服务,所具有的高并发处理能力、高性能、高稳定性已经越来越受青睐。通过上述讲解,view工程没有任何业务逻辑。可以很轻易的就可以用lua实现,从redis或者硬盘获取页面,实现更高效的web服务。如果想学习Java工程化、高性能及分布式、深入浅出。微服务、Spring,MyBatis,Netty源码分析的朋友可以加我的Java进阶qun:694549689,里面有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家。

1.具有1-5工作经验的,面对目前流行的技术不知从何下手,需要突破技术瓶颈的可以加。

2.在公司待久了,过得很安逸,但跳槽时面试碰壁。需要在短时间内进修、跳槽拿高薪的可以加。

3.如果没有工作经验,但基础非常扎实,对java工作机制,常用设计思想,常用java开发框架掌握熟练的可以加。

通过测试对比,view工程读本地硬盘的速度,比读redis还要快(同一个页面,读redis是15ms,硬盘是8ms)。所以终极版架构我选择用硬盘,redis做备份,硬盘读不到时在读redis。
这里前置机的url hash是自己实现的逻辑,engine工程采用同样的规则推送到view服务器硬盘即可,具体逻辑这里不细讲。后面有时间再单独做一次分享。 

优点:具备硬盘版的全部优点,同时去掉tomcat,直接利用nginx高并发能力,以及io处理能力。各项性能、以及稳定性达到最优。

缺点:1、硬盘坏掉,影响访问。2.方法监控,以及日志打印,需使用lua脚本重写。

无论是redis版、硬盘版、openresty+硬盘版,基础都是页面浏览与页面渲染异步化。
优势:

1、所有业务逻辑都剥离到engine工程,新view工程理论上永远无需上线。

2、灾备多样化(redis、硬盘、文件系统),且更加简单,外部接口或者服务出现问题后,切断engine工程渲染,不再更新redis和硬盘即可。

3、新view工程,与业务逻辑完全隔离,不依赖外部接口和服务,大促期间,即便外部接口出现新能问题,或者有外部服务挂掉,丝毫不影响view工程正常访问。

4、性能提升上百倍,从1000ms提升到10ms左右。详见前面的性能截图。

5、稳定性:只要view服务器的网络还正常,可以做到理论上用不挂机。

6、大幅度节省服务器资源,按此架构,4+20+30=54个docker足以支持10亿级pv。(4个nginx proxy_cache、20个view,30个engine)

 从事开发已有近10载,一直就像寄生虫一样吸取着网络上的资源。前段时间受“张开涛”大神所托,对活动系统新架构做了一次简单整理分享给大家,希望能给大家带来一丝帮助。第一次在网上做分享,难免有些没有考虑周全的地方,以后会慢慢的多分享一些自己的心得,大家一起成长。最后再来点心灵鸡汤。。。

小程序时代到来,如何利用小程序赚钱

生活中处处是商机,微信在几年前还只是一个社交工具,但是随着微信小程序的出现,越来越多的商家将商业目光放在了微信小程序上,微信小程序凭借其即用即走的优势受到各行业商家的青睐。

想利用微信小程序赚钱,最常见的方式就是制作电商小程序,搭建线上店铺进行售卖商品,以此赚钱。
电商小程序具备店铺管理、商品上架、支付下单、订单处理、在线客服、快递物流、客户管理等基础功能,以及可以帮助商家完成销售转化的营销玩法,比如秒杀、拼团、砍价、满减送、直播、会员卡等等,商家可以根据自己的店铺所需进行合理选择。


对于没有搭建经验又没有太多预算的商家,可以直接通过得有店一键生成适合自己的线上店铺,无需开发,直接一键套用行业主题模板,可视化拖拽生成,也可自由DIY设计。
得有店系统内200+功能全部免费使用,183+行业主题模板随意套用,30+营销玩法任意组合,快速帮助商家上线小程序,搭建赚钱平台。

关于赚多少钱,这个就需要看商家后续的运营了,商家可以将小程序营销活动在社群、朋友圈、公众号等渠道分享,实现线上+线下推广,通过社群裂变的方式,吸引新用户、促活老用户等等。
除此之外,商家可以针对自己的店铺情况,设置花样营销玩法,比如限时秒杀、老带新拼团、签到领积分+积分商城等等,以此不断为店铺带来新的客户与订单。

如果你也想利用小程序挣钱,可以参考以上内容,希望对弈有用。

关于秒杀系统接口设计和秒杀系统架构的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 秒杀系统接口设计的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于秒杀系统架构、秒杀系统接口设计的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:java图片对比度调整示例代码
下一篇:微服务网关技术选型(最新微服务技术选型)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~