光机电一体化系统接口设计(光机电一体化系统接口设计方案)

网友投稿 401 2023-01-03


本篇文章给大家谈谈光机电一体化系统接口设计,以及光机电一体化系统接口设计方案对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享光机电一体化系统接口设计的知识,其中也会对光机电一体化系统接口设计方案进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

机电一体化系统的设计都有哪些内容方法?

机电一体化系统的设计:
一、机电一体化系统开发的设计思想
机电一体化的优势,在于它吸收了各相关学科之长并加以综合运用而取得整体优化效果,因此在机电一体化系统开发的过程中,要特别强调技术融合,学科交叉的作用。机电一体化系统开发是一项多级别、多单元组成的系统工程。把系统的各单元有机的结合成系统后,各单元的功能不仅相互叠加,而且相互辅助、相互促进、相互提高,使整体的功能大于各单元功能的简单的和,即“整体大于部分的和”。当然,如果设计不当,由于各单元的差异性,在组成系统后会导致单元间的矛盾和摩擦,出现内耗,内耗过大,则可能出现整体小于部分之和的情况,从而失去了一体化的优势。因此,在开发的过程中,一方面要求设计机械系统时,应选择与控制系统的电气参数相匹配的机械系统参数;同时也要求设计控制系统时,应根据机械系统的固有结构参数来选择和确定电气参数。综合应用机械技术和微电子技术,使二者密切结合、相互协调、相互补充,充分体现机电一体化的优越性。
二、机电一体化系统设计方法
拟定机电一体化系统设计方案的方法有取代法、整体设计法和组合法。
1、取代法
这种方法是用电气控制取代原传统中机械控制机构。这种方法是改造传统机械产品和开发新型产品常用的方法。如用电气调速控制系统取代机械式变速机构,用可编程序控制器或微型计算机来取代机械凸轮控制机构、插销板、步进开关、继电器等,以弥补机械技术的不足,这种方法不但能大大简化机械结构,而且还可以提高系统的性能和质量。这种方法的缺点是跳不出原系统的框架,不利于开拓思路,尤其在开发全新的产品时更具有局限性。
2、整体设计法
这种方法主要用于全新产品和系统的开发。在设计时完全从系统的整体目标考虑各子系统的设计,所以接口简单,甚至可能互融一体。例如,某些激光打印机的激光扫描镜,其转轴就是电动机的转子轴,这是执行元件与运动机构结合的一个例子。在大规模集成电路和微机不断普及的今天,随着精密机械技术的发展,完全能够设计出将执行元件、运动机构、检测传感器、控制与机体等要素有机地融为一体的机电一体化新产品。
3、组合法
这种方法就是选用各种标准模块,像积木那样组合成各种机电一体化系统。例如,设计数控机床时可以从系统整体的角度选择工业系列产品,诸如数控单元、伺服驱动单元、位置传感检测单元、主轴调速单元以及各种机械标准件或单元等,然后进行接口设计,将各单元有机的结合起来融为一体。在开发机电一体化系统时,利用此方法可以缩短设计与研制周期、节约工装设备费用,有利于生产管理、使用和维修。
三、机电一体化系统设计的内容
在机电一体化系统(产品)中控制系统设计的主要内容可归结为:确定系统整体控制方案、确定控制算法、选择微型计算机、进行系统的硬件和软件设计,以及系统统调。
1、确定系统整体控制方案
(1)确定控制任务
在设计系统以前,必须对控制对象的工作过程进行深入的调查、分析和熟悉,并明确实际应用中的具体要求,按机械与电子功能划分方案确定系统所要完成的任务,然后用控制流程图或其他适当形式描述控制过程和任务,写成设计任务说明书,作为整个控制系统设计的依据。
(2)构思控制系统的整体方案
1)确定系统的控制结构形式是开环还是闭环控制。
2)采用闭环控制时应考虑检测传感器的选择和所要求精度级别,并考虑机构安装、使用环境等问题。
3)选择执行元件是电动、气动还是液压或其他,根据控制对象具体要求,比较方案的优缺点,择优而用。
4)明确微机在系统中的作用:是设定值计算、直接控制还是数据处理和应具备的功能,需要哪些输入/输出通道和配置哪些外围设备等。最后,画出系统组成的原理框图和附加说明,作为进一步设计的基础,并初步估算成本。
2、建立数学模型确定控制方法
建立系统的数学模型是个复杂过程,也是一个试探的过程,需要反复权衡。
1)根据已初步确定的控制系统的物理结构,采用合适的控制理论方法建立和组成各环节以及整个系统的数学模型表达形式。通过静、动特性计算,为计算机进行运算处理提供依据。
2)根据不同的控制对象和不同的控制性能指标要求,选择不同的控制算法。对过程控制设备的直接数字控制系统常用PID调节的控制算法;在位置数字随动系统中常用实现最少拍控制的控制算法;机床数字控制中常使用逐点比较法、数字积分法和数据采样法的控制算法。另外,还有多种最优控制的控制算法、随机控制和自适应控制的控制算法等供选择。
3)当控制系统较复杂时,控制算法也比较复杂,为设计、调试方便,可忽略小的非线性、小延时等因素的影响,将控制算法作某些合理的简化。利用计算机系统仿真技术,逐步将控制算法完善,直到获得最好的控制效果。
总之,控制算法的确定是一个反复修正与试验的渐进过程。
3、选择微型计算机
对于微机所承担的任务给定以后,完成同一任务的微机方案有多种。一般以既能完成给定任务(应包括处理确定的控制算法)、又能充分发挥选用微机的功能、再留有一定功能余量为原则来选择。
从控制生产机械或生产过程要求出发,微型机应满足以下要求:
(1)有较完善的中断系统
对于控制用计算机,实时控制功能是一大特点。它包含系统正常运行时的实时控制能力和发生故障时紧急处理的能力。这种处理和控制一般都采用中断控制方式,即CPU及时接收终端请求、暂停原来执行程序,转而执行相应的中断服务程序,待中断处理完毕,再返回继续执行原程序。
在选用与CPU相应的接口芯片时也应有中断工作方式,以保证控制系统能满足生产中提出的各种要求。对于比较复杂的控制,要考虑采用实时操作系统。
(2)足够的存储容量
由于微型机内存容量有限,当内存容量不足以存放程序和数据时,应扩充内存,或配备适当的外存储器(如硬磁盘等)。
(3)完备的输入/输出通道
输入输出通道是系统外部过程和微机交换信息的通道。根据实际需要有开关量输入/输出通道、模拟量输入/输出通道、数字量输入/输出通道和实现快速、批量交换信息的直接数据通道。通道的操作方式有串行、并行以及随机选择与按某种预订顺序进行工作等。
(4)微处理器芯片的选择
这一选择的实质就是确定能满足控制功能要求的微处理器的字长、速度和指令系统。这三者是相互依存的。一般选择:
1)对通常的顺序控制、程序控制可选用1位微处理器;
2)对计算量小、计算精度和速度要求不高的系统可选用4位微处理器,如计算器、家用电器控制及简易控制等;
3)对计算精度要求较高、处理速度较快的系统可选用8位微处理器,如经济型的线切割机床、普通机床的控制和温度控制等;
4)对要求计算精度高、处理速度快的系统统可选用16位或32位微处理器,甚至采用精简指令集运算的芯片RIRC或多CPU,如控制算法复杂的生产过程控制,要求高速运行的机床控制,特别是大量的数据处理等。
(5)系统总线的选择
微型计算机主要由若干块印制电路板(按功能模块设计、制造)构成。各块板之间的连接,当然是通过印制板的插座之间的连线来实现的。通常,为了给使用和维护带来方便,希望插座之间的连线具有通用性——一个系统中的各块印制板可插在任一插座上。同时,也是为了各厂家生产的电路板具有通用性、互换性,就要对插座及连线订个标准。这就是系统总线选择的由来。
目前支持微型计算机系统机构的总线有:STD Bus支持8位和16位字长;Multi Bus工型可支持16位字长,Ⅱ型可支持32位字长;S-100 Bus可支持16位字长;VERSA Bus可支持32位字长,以及VME bus可支持32位字长等。生产厂家为这类总线提供各种型号规格的OEM(初始设备制造)产品,包括主模块和从模块,由用户任意选配。
4、系统总体设计
系统设计主要是依据上述控制方案、设计所要求和选用的微机类型,对系统进行具体的设计。其设计可分为硬件的接口设计和软件设计两大类型。
在对系统总体设计时,一个最重要的问题是如何解决微机、被控对象和操作者这三者之间可靠地适时进行信息交换的通道和分时控制的时序安排。也就是综合考虑用硬件配置和软件措施解决系统运行的次序安排,以保证系统有条不紊地运行。
(1)接口设计
对于一种产品(或系统),其各部件之间,各子系统之间往往需要传递动力、运动、命令或信息,这都是通过各种接口来实现的。机械本体各部件之间、执行元件与执行机构之间、检测传感元件与执行机构之间通常是机械接口;电子电路模块相互之间的信号传送接口、控制器与检测传感元件之问的转换接口、控制器与执行元件之间的转换接口通常是电气接口。
机电一体化产品的内外接口实际上就是一种进行物质、能量和信息交换的界面,它具有存储、转换和服务功能。按功能可以将接口划分为以下3种:
1)零接口。不需进行任何转换,把具有结合关系的两部分直接连接起来称为零接口,如连接管、电缆、接线柱和刚性联轴节等。
2)普通转换接口。在具有结合关系的两部分之间存在能量或信息的转换,但不含微处理器的接口为普通转换接口。如减速器、变压器、电磁离合器、放大器、光电耦合器、A/D转换器、D/A转换器等。
3)智能转换接口。它是一种含有微处理器的转换接口,具有可编程的特点,因而能够自动改变接口条件,如由微处理器编程的8255A,8279,PIO等。
目前,大部分硬件接口和软件接口都已标准化或正在逐步标准化。对于硬件接口,在设计时可以根据需要选择适当的接口,再配合接口编写相应的程序。
(2)操作控制台设计
微机控制系统必须便于人机联系,通常都要设计一个现场操作人员使用的控制台。这个控制台一般不能用微机所带的键盘代替。原因是现场操作人员需要的是简单、明了、安全的操作面板,以实现对机器的操作。所以,要求操作控制台应有以下功能:
1)有一组或几组数据输入键(数字键或拨码开关等),用于输入或更新给定值、修改控制器参数或其他必要的数据。
2)有一组或几组功能键或转换开关,用于转换工作方式,启动、停止系统或完成某种指定功能。
3)有一个显示装置或显示屏,用于显示各种运行状态、参数及故障指示等。控制台上应该有一个“紧急停止”按钮,用于有紧急事故时停止系统运行,转入故障处理。
应当明确指出,控制台上每一种信号都与系统的运行状态密切相关。设计时,必须明确这些转换开关、按钮、键盘、显示器和故障指示灯的作用和意义,仔细设计控制台的硬件及其相应的管理程序,使设计的操作控制台既能方便操作又保证安全可靠,即使操作失误也不会引起严重后果。
(3)微型计算机控制系统的电源设计
微机控制系统中的电源,根据需要可以有不同的类型(直流和交流)和规格(电压和功率)。按照使用情况,对性能的要求也不尽相同,在设计过程中应按实际要求合理选用调试,并控制电压变动。电源本身要具有过压、短路、过载保护和热保护,否则将会造成不可弥补的损失。
(4)整机的安装、联接设计
这是一种整体结构设计。微机控制系统安装既包括了与被控对象的联接安排,也考虑了主机本身的安装联接问题。其设计原则应该是安装、联接的可靠性和使用、装配、维护的方便性。
1)安装、联接结构具有防震性,即印制电路板、接插件和元器件包括电缆等应牢固地安装在同一个机壳上,不因振动而松动。
2)采用标准或专用、制造质量好的防松接插件,以保证接触可靠而又使用、维护方便。
3)布线结构要合理,能防止相互间的电磁耦合干扰。一定要使信号线和功率线进行隔离,分别走线。对模拟信号更要注意走线的长短和屏蔽,如走线太长,需要考虑进行信号增强等措施。
4)正确安装安全地线、信号地线、屏蔽地线以及功率地线和强电地线,最终要进行地线连接。地线要采用一点接地型,即把信号地线、功率地线、被控对象地线(安全地)等连接到公共接地点。而总的公共接地点必须与大地接触良好,一般接地电阻要小于(4~7)Ω。
(5)软件设计
对于选定的微机控制系统,其微机本身已有一定的软件支持,一般这些软件要求用户了解其使用方法和基本原理。如果把微型计算机专门为某一控制领域而设计成专用的控制计算机,用户就需要利用计算机的指令系统和相应的开发系统来设计系统软件,即控制软件、管理软件、诊断软件等。这些系统软件的设计要求更有专用性和针对性。
在微机控制中,其软件任务大体可以分为数据处理和过程控制两大基本类型。数据处理主要包括数据的采集、数字滤波、标度变换,以及数值计算等等。过程控制主要是使微机按照一定控制算法进行计算,然后进行输出去控制生产。
5、系统联调
微机控制系统设计完成后,硬件电路要进行制作、安装及试验,并进行连续烤机运行。软件各模块要在微机上分别进行调试,使其正确无误,然后存盘。上述工作完成后,就可将硬件与软件组合起来进行系统联调的模拟试验,正确无误后,进行现场实验,直到正式运行。在这个阶段,最重要的是仔细设计模拟调试的方法与步骤,以及所用的测试手段。
此外,在现场试验前,要仔细检查接线,无误后才能进行现场调试。现场调试的步骤根据不同对象要仔细考虑。首先要把涉及的自动保护项目进行实验,确认有效后才可进入功能、参数等项目的试验。

什么叫做机电一体化设计系统?

“机电一体化”在国外被称为Mechatronics是日本人在20世纪70年代初提出来光机电一体化系统接口设计光机电一体化系统接口设计,它是用英文Mechanics的前半部分和Electron-ics的后半部分结合在一起构成的一个新词,意思是机械技术和电子技术的有机结合。这一名称已得到包括我国在内的世界各国的承认,我国的工程技术人员习惯上把它译为机电一体化技术。机电一体化技术又称为机械电子技术,是机械技术、电子技术和信息技术有机结合的产物。二、机电一体化技术基本概念机电一体化技术是在微型计算机为代表的微电子技术、信息技术迅速发展,向机械工业领域迅猛渗透,机械电子技术深度结合的现代工业的基础上,综合应用机械技术、微电子技术、信息技术、自动控制技术、传感测试技术、电力电子技术、接口技术及软件编程技术等群体技术,从系统理论出发,根据系统功能目标和优化组织结构目标,以智力、动力、结构、运动和感知组成要素为基础,对各组成要素及其间的信息处理,接口耦合,运动传递,物质运动,能量变换进行研究,使得整个系统有机结合与综合集成,并在系统程序和微电子电路的有序信息流控制下,形成物质的和能量的有规则运动,在高功能、高质量、高精度、高可靠性、低能耗等诸方面实现多种技术功能复合的最佳功能价值系统工程技术。三、机电一体化技术五大组成要素与四大原则:
1、五大组成要素:一个机电一体化系统中一般由结构组成要素、动力组成要素、运动组成要素、感知组成要素、智能组成要素五大组成要素有机结合而成。(请参考机电之家机电一体化频道)机械本体(结构组成要素)是系统的所有功能要素的机械支持结构,一般包括有机身、框架、支撑、联接等。动力驱动部分(动力组成要素)依据系统控制要求,为系统提供能量和动力以使系统正常运行。测试传感部分(感知组成要素)对系统的运行所需要的本身和外部环境的各种参数和状态进行检测,并变成可识别的信号,传输给信息处理单元,经过分析、处理后产生相应的控制信息。控制及信息处理部分(职能组成要素)将来之测试传感部分的信息及外部直接输入的指令进行集中、存储、分析、加工处理后,按照信息处理结果和规定的程序与节奏发出相应的指令,控制整个系统有目的的运行。执行机构(运动组成要素)根据控制及信息处理部分发出的指令,完成规定的动作和功能。
2、机电一体化四大原则:构成机电一体化系统的五大组成要素其内部及相互之间都必须遵循结构耦合、运动传递、信息控制与能量转换四大原则。接口耦合:两个需要进行信息交换和传递的环节之间,由于信息模式不同(数字量与模拟量,串行码与并行码,连续脉冲与序列脉冲等)无法直接传递和交换,必须通过接口耦合来实现。而两个信号强弱相差悬殊的环节之间,也必须通过接口耦合后,才能匹配。变换放大后的信号要在两个环节之间可靠、快速、准确的交换、传递,必须遵循一致的时序、信号格式和逻辑规范才行,因此接口耦合时就必须具有保证信息的逻辑控制功能,使信息按规定的模式进行交换与传递。能量转换:两个需要进行传输和交换的环节之间,由于模式不同而无法直接进行能量的转换和交流,必须进行能量的转换,能量的转换包括执行器,驱动器和他们的不同类型能量的最优转换方法及原理。信息控制:在系统中,所谓智能组成要素的系统控制单元,在软、硬件的保证下,完成信息的采集、传输、储存、分析、运算、判断、决策,以达到信息控制的目的。对于智能化程度高的信息控制系统还包含了知识获得、推理机制以及自学习功能等知识驱动功能。运动传递:运动传递使构成机电一体化系统各组成要素之间,不同类型运动的变换与传输以及以运动控制为目的的优化。三、自动化技术:所谓自动化技术,是指人类利用各种技术手段和方法来代替人去完成各种测试、分析、判断和控制工作,以现实预期的目标、功能。一个自动化系统通常由多个环节要素组成,以完成信息的获取、信息的传递、信息的转换、信息的处理及信息的执行等功能,最后实现自动运行目标。

机电一体化系统设计的内容简介

《机电一体化系统设计(普通高等教育机械类十二五规划系列教材)》( 俞竹青、金卫东担任主编)介绍了机电一体化系统光机电一体化系统接口设计的基本原理、机电一体化系统的构成、常用传感器、常用执行元件以及相关检测控制电路设计光机电一体化系统接口设计,力求贴近工程实用。全书共7章,内容包括光机电一体化系统接口设计:概论、机械系统部件及其设计、检测传感器及其接口电路、执行元件及控制、单片机及接口电路设计、机电一体化系统的抗干扰设计、机电一体化系统设计实例。本书注意理论与实际的结合,重视解决工程实际问题,并力求做到突出重点,层次分明,语言易懂,以便于读者自学。
《机电一体化系统设计(普通高等教育机械类十二五规划系列教材)》主要作为高等院校机械设计制造、机械电子工程、工业自动化等专业的教材,也可作为高等专科学校、高等职业学校、成人高校相关专业教材,并可供机电类工程技术人员和研究人员参考。

本科《机电一体化系统设计》毕业论文怎么写?

这个呢》机电一体化技术及其应用研究
摘 要 讨论了机电一体化技术对于改变整个机械制造业面貌所起的重要作用,并说明其在钢铁工业中的应用以及发展趋势。
关键词 机电一体化 技术 应用
1 机电一体化技术发展
机电一体化是机械、微电子、控制、计算机、信息处理等多学科的交叉融合,其发展和进步有赖于相关技术的进步与发展,其主要发展方向有数字化、智能化、模块化、网络化、人性化、微型化、集成化、带源化和绿色化。
1.1 数字化
微控制器及其发展奠定了机电产品数字化的基础,如不断发展的数控机床和机器人;而计算机网络的迅速崛起,为数字化设计与制造铺平了道路,如虚拟设计、计算机集成制造等。数字化要求机电一体化产品的软件具有高可靠性、易操作性、可维护性、自诊断能力以及友好人机界面。数字化的实现将便于远程操作、诊断和修复。
1.2 智能化
即要求机电产品有一定的智能,使它具有类似人的逻辑思考、判断推理、自主决策等能力。例如在CNC数控机床上增加人机对话功能,设置智能I/O接口和智能工艺数据库,会给使用、操作和维护带来极大的方便。随着模糊控制、神经网络、灰色理论、小波理论、混沌与分岔等人工智能技术的进步与发展,为机电一体化技术发展开辟了广阔天地。
1.3 模块化
由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、动力接口、环境接口的机电一体化产品单元模块是一项复杂而有前途的工作。如研制具有集减速、变频调速电机一体的动力驱动单元;具有视觉、图像处理、识别和测距等功能的电机一体控制单元等。这样,在产品开发设计时,可以利用这些标准模块化单元迅速开发出新的产品。
1.4 网络化
由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾。而远程控制的终端设备本身就是机电一体化产品,现场总线和局域网技术使家用电器网络化成为可能,利用家庭网络把各种家用电器连接成以计算机为中心的计算机集成家用电器系统,使人们在家里可充分享受各种高技术带来的好处,因此,机电一体化产品无疑应朝网络化方向发展。
1.5 人性化
机电一体化产品的最终使用对象是人,如何给机电一体化产品赋予人的智能、情感和人性显得愈来愈重要,机电一体化产品除了完善的性能外,还要求在色彩、造型等方面与环境相协调,使用这些产品,对人来说还是一种艺术享受,如家用机器人的最高境界就是人机一体化。
1.6 微型化
微型化是精细加工技术发展的必然,也是提高效率的需要。微机电系统(Micro Electronic Mechanical Systems,简称MEMS)是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路,直至接口、通信和电源等于一体的微型器件或系统。自1986年美国斯坦福大学研制出第一个医用微探针,1988年美国加州大学Berkeley分校研制出第一个微电机以来,国内外在MEMS工艺、材料以及微观机理研究方面取得了很大进展,开发出各种MEMS器件和系统,如各种微型传感器(压力传感器、微加速度计、微触觉传感器),各种微构件(微膜、微粱、微探针、微连杆、微齿轮、微轴承、微泵、微弹簧以及微机器人等)。
1.7 集成化
集成化既包含各种技术的相互渗透、相互融合和各种产品不同结构的优化与复合,又包含在生产过程中同时处理加工、装配、检测、管理等多种工序。为了实现多品种、小批量生产的自动化与高效率,应使系统具有更广泛的柔性。首先可将系统分解为若干层次,使系统功能分散,并使各部分协调而又安全地运转,然后再通过软、硬件将各个层次有机地联系起来,使其性能最优、功能最强。
1.8 带源化
是指机电一体化产品自身带有能源,如太阳能电池、燃料电池和大容量电池。由于在许多场合无法使用电能,因而对于运动的机电一体化产品,自带动力源具有独特的好处。带源化是机电一体化产品的发展方向之一。
1.9 绿色化
科学技术的发展给人们的生活带来巨大变化,在物质丰富的同时也带来资源减少、生态环境恶化的后果。所以,人们呼唤保护环境,回归自然,实现可持续发展,绿色产品概念在这种呼声中应运而生。绿色产品是指低能耗、低材耗、低污染、舒适、协调而可再生利用的产品。在其设计、制造、使用和销毁时应符合环保和人类健康的要求,机电一体化产品的绿色化主要是指在其使用时不污染生态环境,产品寿命结束时,产品可分解和再生利用。
2 机电一体化技术在钢铁企业中应用
在钢铁企业中,机电一体化系统是以微处理机为核心,把微机、工控机、数据通讯、显示装置、仪表等技术有机的结合起来,采用组装合并方式,为实现工程大系统的综合一体化创造有力条件,增强系统控制精度、质量和可靠性。机电一体化技术在钢铁企业中主要应用于以下几个方面:
2.1 智能化控制技术(IC)
由于钢铁工业具有大型化、高速化和连续化的特点,传统的控制技术遇到了难以克服的困难,因此非常有必要采用智能控制技术。智能控制技术主要包括专家系统、模糊控制和神经网络等,智能控制技术广泛应用于钢铁企业的产品设计、生产、控制、设备与产品质量诊断等各个方面,如高炉控制系统、电炉和连铸车间、轧钢系统、炼钢---连铸---轧钢综合调度系统、冷连轧等。
2.2 分布式控制系统(DCS)
分布式控制系统采用一台中央计算机指挥若干台面向控制的现场测控计算机和智能控制单元。分布式控制系统可以是两级的、三级的或更多级的。利用计算机对生产过程进行集中监视、操作、管理和分散控制。随着测控技术的发展,分布式控制系统的功能越来越多。不仅可以实现生产过程控制,而且还可以实现在线最优化、生产过程实时调度、生产计划统计管理功能,成为一种测、控、管一体化的综合系统。DCS具有特点控制功能多样化、操作简便、系统可以扩展、维护方便、可靠性高等特点。DCS是监视集中控制分散,故障影响面小,而且系统具有连锁保护功能,采用了系统故障人工手动控制操作措施,使系统可靠性高。分布式控制系统与集中型控制系统相比,其功能更强,具有更高的安全性。是当前大型机电一体化系统的主要潮流。
2.3 开放式控制系统(OCS)
开放控制系统(Open Control System)是目前计算机技术发展所引出的新的结构体系概念。“开放”意味着对一种标准的信息交换规程的共识和支持,按此标准设计的系统,可以实现不同厂家产品的兼容和互换,且资源共享。开放控制系统通过工业通信网络使各种控制设备、管理计算机互联,实现控制与经营、管理、决策的集成,通过现场总线使现场仪表与控制室的控制设备互联,实现测量与控制一体化。
2.4 计算机集成制造系统(CIMS)
钢铁企业的CIMS是将人与生产经营、生产管理以及过程控制连成一体,用以实现从原料进厂,生产加工到产品发货的整个生产过程全局和过程一体化控制。目前钢铁企业已基本实现了过程自动化,但这种“自动化孤岛”式的单机自动化缺乏信息资源的共享和生产过程的统一管理,难以适应现代钢铁生产的要求。未来钢铁企业竞争的焦点是多品种、小批量生产,质优价廉,及时交货。为了提高生产率、节能降耗、减少人员及现有库存,加速资金周转,实现生产、经营、管理整体优化,关键就是加强管理,获取必须的经济效益,提高了企业的竞争力。美国、日本等一些大型钢铁企业在20世纪80年代已广泛实现CIMS化。
2.5 现场总线技术(FBT)
现场总线技术(Fied Bus Technology)是连接设置在现场的仪表与设置在控制室内的控制设备之间的数字式、双向、多站通信链路。采用现场总线技术取代现行的信号传输技术(如4~20mA,DC直流传输)就能使更多的信息在智能化现场仪表装置与更高一级的控制系统之间在共同的通信媒体上进行双向传送。通过现场总线连接可省去66%或更多的现场信号连接导线。现场总线的引入导致DCS的变革和新一代围绕开放自动化系统的现场总线化仪表,如智能变送器、智能执行器、现场总线化检测仪表、现场总线化PLC(Programmable Logic Controller)和现场就地控制站等的发展。
2.6 交流传动技术
传动技术在钢铁工业中起作至关重要的作用。随着电力电子技术和微电子技术的发展,交流调速技术的发展非常迅速。由于交流传动的优越性,电气传动技术在不久的将来由交流传动全面取代直流传动,数字技术的发展,使复杂的矢量控制技术实用化得以实现,交流调速系统的调速性能已达到和超过直流调速水平。现在无论大容量电机或中小容量电机都可以使用同步电机或异步电机实现可逆平滑调速。交流传动系统在轧钢生产中一出现就受到用户的欢迎,应用不断扩大。
参考文献
1 杨自厚. 人工智能技术及其在钢铁工业中的应用[J].冶金自动化,1994(5)
2 唐立新.钢铁工业CIMS特点和体系结构的研究[J].冶金自动化,1996(4)
3 唐怀斌. 工业控制的进展与趋势 [J].自动化与仪器仪表,1996(4)
4 王俊普. 智能控制[M]. 合肥:中国科学技术大学出版社,1996
5 林行辛. 钢铁工业自动化的进展与展望[J].河北冶金,1998(1)
6 殷际英. 光机电一体化实用技术[M].北京:化学工业出版社,2003
7 芮延年. 机电一体化系统设计[M]. 北京:机械工业出版社,2004. 关于光机电一体化系统接口设计和光机电一体化系统接口设计方案的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 光机电一体化系统接口设计的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于光机电一体化系统接口设计方案、光机电一体化系统接口设计的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Java容器类源码详解 Deque与ArrayDeque
下一篇:java rocketmq
相关文章

 发表评论

暂时没有评论,来抢沙发吧~