深入学习java ThreadLocal的源码知识

网友投稿 223 2023-01-05


深入学习java ThreadLocal的源码知识

简介

ThreadLocal是每个线程自己维护的一个存储对象的数据结构,线程间互不影响实现线程封闭。一般我们通过ThreadLocal对象的get/set方法存取对象。

源码分析

ThreadLocal的set方法源码如下

public void set(T value) {

Thread t = Thread.currentThread();

ThreadLocalMap map = getMap(t); // 根据当前线程获得ThreadLocalMap对象

if (map != null)

map.set(this, value); // 如果有则set

else

createMap(t, value); // 否则创建ThreadLocalMap对象

}

ThreadLocalMap getMap(Thread t) {

return t.threadLocals;

}

void createMap(Thread t, T firstValue) {

t.threadLocals = new ThreadLocalMap(this, firstValue);

}

通过getMap方法,可见我们返回的map实际上是Thread对象的threadLocals属性。而这个ThreadLocalMap就是用来存储数据的结构。

ThreadLocalMap介绍

ThreadLocalMap是ThreadLocal的核心,定义在ThreadLocal类里的内部类,他维护了一个Enrty数组。ThreadLocal存/取数据都是通过操作Enrty数组来实现的。

Enrty数组作为一个哈希表,将对象通过开放地址方法散列到这个数组中。作为对比,HashMap则是通过链表法将对象散列到数组中。

开放地址法就是元素散列到数组中的位置如果有冲突,再以某种规则在数组中找到下一个可以散列的位置,而在ThreadLocalMap中则是使用线性探测的方式向后依次查找可以散列的位置。

Enery介绍

Enery在这里我们称之为元素,是散列表中维护的对象单元。

// 哈希映射表中的元素使用其引用字段作为键(它始终是ThreadLocal对象)继承WeakReference。

// 注意,null键(即entry.get()== null)表示不再引用该键,因此可以从表中删除该元素。

// 这些元素在下面的代码中称为“旧元素”。

// 这些“旧元素”就是脏对象,因为存在引用不会被GC,

// 为避免内存泄露需要代码里清理,将引用置为null,那么这些对象之后就会被GC清理。

// 实际上后面的代码很大程度上都是在描述如何清理“旧元素”的引用

static class Entry extends WeakReference> {

Object value;

Entry(ThreadLocal> k, Object v) {

super(k);

value = v;

}

}

到这里可能有两个疑问

1、既然要存储的内容是线程独有的对象,为什么不直接在Thread里设置一个属性直接存储该对象?或者说为什么要维护一个Entry散列表来存储内容并以ThreadLocal对象作为key?

答:一个ThreadLocal对象只属于一个线程,但一个线程可以实例化ThreadLocal对象。而ThreadLocalMap维护的数组存储的就是以ThreadLocal实例作为key的Entry对象。

2、ThreadLocalMap中的Enery为什么要继承WeakReference?

答:首先弱引用会在ThreadLocal对象不存在强引用的情况,弱引用对象会在下次GC时被清除。

将ThreadLocal对象作为弱引用目的是为了防止内存泄露。

假设Enery的key不是弱引用,即使在我们的代码里threadLocal引用已失效,threadLocal也不会被GC,因为当前线程持有ThreadLocalMap的引用,而ThreadLocalMap持有Entry数组的引用,Entry对象的key又持有threadLocal的引用,threadLocal对象针对当前线程可达,所以不会被GC。

而Enery的key值threadLocal作为弱引用,在引用失效时会被GC。但即使threadLocal做为弱引用被GC清理,Entry[]还是存在entry对象,只是key为null,vlue对象也还存在,这些都是脏对象。弱引用不单是清理了threadLocal对象,它的另一层含义是可以标识出Enery[]数组中哪些元素应该被GC(我们这里称为旧元素),然后程序里找出这些entry并清理。

ThreadLocalMap的set方法

回到前面提到的set方法,当map不为null时会调用ThreadLocalMap的set方法。

ThreadLocalMap的set方法描述了如何将值散列到哈希表中,是开放地址法以线性探测方式散列的实现。在成功set值之后,尝试清理一些旧元素,如果没有发现旧元素则判断阈值,确认哈希表是否足够大、是否需要扩容。如果哈希表过于拥挤,get/set值会发生频繁的冲突,这是不期望的情况。ThreadLocalMap的set方法代码及详细注释如下

private void set(ThreadLocal> key, Object value) {

// We do not use a fast path as with get() because it is at

// least as common to use set() to create new entries as

// it is to replace existing ones, in which case, a fast

// path would fail more often than not.

// 我们不像get()那样先使用快速路径(直接散列)判断

// 因为使用set()创建新元素至少与替换现有元素一样频繁,在这种情况下,散列后立刻判断会容易失败。

// 所以直接先线性探测

Entry[] tab = table;

int len = tab.length;

// 根据hashcode散列到数组位置

int i = key.threadLocalHashCode & (len-1);

// 开放地址法处理散列冲突,线性探测找到可以存放位置

// 遍历数组找到下一个可以存放元素的位置,这种位置包含三种情况

// 1.元素的key已存在,直接赋值value

// 2.元素的key位null,说明k作为弱引用被GC清理,该位置为旧数据,需要被替换

// 3.直到遍历到一个数组位置为null的位置赋值

for (Entry e = tab[i];

e != null;

e = tab[i = nextIndex(i, len)]) {

ThreadLocal> k = e.get();

if (k == key) {//key已存在则直接更新

e.value = value;

return;

}

if (k == null) { //e不为null但k为null说明k作为弱引用被GC,是旧数据需要被清理

// i为旧数据位置,清理该位置并依据key合理地散列或将value替换到数组中

// 然后重新散列i后面的元素,并顺便清理i位置附近的其他旧元素

replaceStaleEntry(key, value, i);

return;

}

}

// 遍历到一个数组位置为null的位置赋值

tab[i] = new Entry(key, value);

int sz = ++size;

// 调用cleanSomeSlots尝试性发现并清理旧元素,如果没有发现且旧元素当前容量超过阈值,则调用rehash

if (!cleanSomeSlots(i, sz) && sz >= threshold)

// 此时认为表空间不足,全量遍历清理旧元素,清理后判断容量若大于阈值的3/4,若是则扩容并从新散列

rehash();

}

replaceStaleEntry方法

replaceStaleEntry方法是当我们线性探测时,如果碰到了旧元素就执行。该方法做的事情比较多,可以总结为我们在staleSlot位置发现旧元素,将新值覆盖到staleSlot位置上并清理staleSlot附近的旧元素。“附近”指的是staleSlot位置前后连续的非null元素。代码及详细注释如下

private void replaceStaleEntry(ThreadLocal> key, Object value, int staleSlot) {

Entry[] tab = table;

int len = tab.length;

Entry e;

// Back up to check for prior stale entry in current run.

// We clean out whole runs at a time to avoid continual

// incremental rehashing due to garbage collector freeing

// up refs in bunches (i.e., whenever the collector runs).

// 向前检查是否存在旧元素,一次性彻底清理由于GC清除的弱引用key导致的旧数据,避免多次执行

int slotToExpunge = staleSlot;

// 向前遍历找到entry不为空且key为null的位置赋值给slotToExpunge

for (int i = prevIndex(staleSlot, len);

(e = tab[i]) != null;

i = prevIndex(i, len))

if (e.get() == null)

slotToExpunge = i;

// Find either the key or trailing null slot of run, whichever

// occurs first

// staleSlot位置向后遍历如果位置不为空,判断key是否已经存在

// 回想前面我们是set实例的时候,碰到旧元素的情况下调用该方法,所以很可能在staleSlot后面key是已经存在的

for (int i = nextIndex(staleSlot, len);

(e = tab[i]) != null;

i = nextIndex(i, len)) {

ThreadLocal> k = e.get();

// If we find key, then we need to swap it

// with the stale entry to maintain hash table order.

// The newly stale slot, or any other stale slot

// encountered above it, can then be sent to expungeStaleEntry

// to remove or rehash all of the other entries in run.

// 如果我们找到键,那么我们需要将它与旧元素交换以维护哈希表顺序。

// 然后可以将交换后得到的旧索引位置

// 或其上方遇到的任何其他旧索引位置传给expungeStaleEntry清理旧条

// 如果碰到key相同的值则覆盖value

if (k == key) {

e.value = value;

// i位置与staleSlot旧数据位置做交换,将数组元素位置规范化,维护哈希表顺序

// 这里维护哈希表顺序是必要的,举例来说,回想前面threadLocal.set实例的判断,是线性探测找到可以赋值的位置

// 如果哈希顺序不维护,可能造成同一个实例被赋值多次的情况

// 包括后面清理旧元素的地方都要重新维护哈希表顺序

tab[i] = tab[staleSlot];

tab[staleSlot] = e;

// Start expunge at preceding stale entry if it exists

// 开始清理前面的旧元素

// 如果前面向前或向后查找的旧元素不存在,也就是slotToExpunge == staleSlot

//此时slotToExpunge = i,此时位置i的元素是旧元素,需要被清理

// slotToExpunge用来存储第一个需要被清理的旧元素位置

if (slotToExpunge == staleSlot)

slotToExpunge = i;

// 清理完slotToExpunge位置及其后面非空连续位置后,通过调用cleanSomeSlots尝试性清理一些其他位置的旧元素

// cleanSomeSlots不保证清理全部旧元素,它的时间复杂度O(log2n),他只是全量清理旧元素或不清理的折中

cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);

return;

}

// If we do not find stale entry on backward scan, the

// first stale entry seen while scanning for key is the

// first still present in the run.

// 如果前面向前查找的旧元素不存在,也就是slotToExpunge == staleSlot,而此时位置i为旧元素,所以将i赋值给slotToExpunge

// slotToExpunge用来存储第一个需要被清http://理的旧元素位置

if (k == null && slotToExpunge == staleSlot)

slotToExpunge = i;

}

// If key not found, put new entry in stale slot

// 如果向后遍历非空entry都没有找到key,则直接赋值给当前staleSlot旧元素位置

tab[staleSlot].value = null;

tab[staleSlot] = new Entry(key, value);

// If there are any other stale entries in run, expunge them

// 通过前面根据staleSlot向前/向后遍历,如果发现有旧元素则清理

if (slotToExpunge != staleSlot)

// 清理完slotToExpunge位置及其后面非空连续位置后,通过调用cleanSomeSlots尝试性清理一些其他位置的旧元素

// cleanSomeSlots不保证清理全部旧元素,它的时间复杂度O(log2n),他只是全量清理旧元素或不清理的折中

cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);

}

expungeStaleEntry方法

查找到的旧元素都会执行expungeStaleEntry方法。expungeStaleEntry频繁被使用,它是清理旧元素的核心方法。该方法的做的事情就是:清理包括staleSlot位置后面连续为空元素中的所有旧元素并重新散列,返回staleSlot后面首个null位置。代码及详细注释如下

private int expungeStaleEntry(int staleSlot) {

Entry[] tab = table;

int len = tab.length;

// expunge entry at staleSlot

// 清空staleSlot位置的元素

tab[staleSlot].value = null;

tab[staleSlot] = null;

size--;

// Rehash until we encounter null

// 旧位置清理后,后面的元素需要重新散列到数组里,直到遇到数组位置为null。即维护哈希顺序。

Entry e;

int i;

for (i = nextIndex(staleSlot, len);

(e = tab[i]) != null;

i = nextIndex(i, len)) {

ThreadLocal> k = e.get();

if (k == null) { // k == null说明此位置也是旧数据,需要清理

e.value = null;

tab[i] = null;

size--;

} else {

int h = k.threadLocalHashCode & (len - 1);

// 将staleSlot后面不为空位置重新散列,如果与当前位置不同,则向前移动到h位置后面(包括h)的首个空位置

if (h != i) {

tab[i] = null;

// Unlike Knuth 6.4 Algorithm R, we must scan until

// null because multiple entries could have been stale.

while (tab[h] != null)

h = nextIndex(h, len);

tab[h] = e;

}

}

}

return i;

}

cleanSomeSlots方法

cleanSomeSlots是一个比较灵动的方法。就如他的名字"some"一样。该方法只是尝试性地寻找一些旧元素。添加新元素或替换旧元素时都会调用此方法。它的执行复杂度log2(n),他是 “不清理”和“全量清理”的折中。若有发现旧元素返回true。代码及详细注释如下

private boolean cleanSomeSlots(int i, int n) {

boolean removed = false;

Entry[] tab = table;

int len = tab.length;

do {

i = nextIndex(i, len);

Entry e = tab[i];

if (e != null && e.get() == null) {

n = len;

removed = true;

i = expungeStaleEntry(i);

}

// n >>>= 1无符号右移1位,即移动次数以n的二进制最高位的1的位置为基准

// 所以时间复杂度log2(n)

} while ( (n >>>= 1) != 0);

return removed;

}

rehash/expungeStaleEntries/resize方法

在成功set值后,通过阈值判断,如果程序认为表空间不足就会调用rehash方法。

rehash做了两件事,首先全量遍历清理旧元素,然后在清理后判断容量是否足够,若成立则2倍扩容并重新散列。

expungeStaleEntries则是全量清理旧元素,resize则是二倍扩容。

// rehash全量地遍历清理旧元素,然后判断容量若大于阈值的3/4,则扩容并从新散列

// 程序认为表空间不足时会调用该方法

private void rehash() {

// 全量遍历清理旧元素

expungeStaleEntries();

// Use lower threshold for doubling to avoid hysteresis

// 适当的扩容,以避免hash散列到数组时过多的位置冲突

if (size >= threshold - threshold / 4)

// 2倍扩容并重新散列

resize();

}

// 全量遍历清理旧元素

private void expungeStaleEntries() {

Entry[] tab = table;

int len = tab.length;

for (int j = 0; j < len; j++) {

Entry e = tab[j];

if (e != null && e.get() == null)

expungeStaleEntry(j);

}

}

// 二倍扩容

private void resize() {

Entry[] oldTab = table;

int oldLen = oldTab.length;

int newLen = oldLen * 2;

Entry[] newTab = new Entry[newLen];

int count = 0;

for (int j = 0; j < oldLen; ++j) {

Entry e = oldTab[j];

if (e != null) {

ThreadLocal> k = e.get();

if (k == null) {

e.value = null; // Help the GC

} else {

int h = k.threadLocalHashCode & (newLen - 1);

while (newTab[h] != null)

h = nextIndex(h, newLen);

newTab[h] = e;

count++;

}

}

}

setThreshold(newLen);

size = count;

table = newTab;

}

ThreadLocal的get方法

ThreadLocal的gehttp://t逻辑相比set要简单的多。他只是将threadLocal对象散列到数组中,通过线性探测的方式找到匹配的值。代码及详细注释如下

public T get() {

Thread t = Thread.currentThread();

ThreadLocalMap map = getMap(t);

if (map != null) {

ThreadLocalMap.Entry e = map.getEntry(this);

if (e != null) {

@SuppressWarnings("unchecked")

T result = (T)e.value;

return result;

}

}

// 如果map不为null初始化一个key为当前threadLocal值为null的ThreadLocalMap对象

return setIBvvSDbbSIXnitialValue();

}

private Entry getEntry(ThreadLocal> key) {

int i = key.threadLocalHashCode & (table.length - 1);

Entry e = table[i];

if (e != null && e.get() == key)

return e;

else // 直接散列找不到的情况,调用getEntryAfterMiss线性探测查找期望元素

return getEntryAfterMiss(key, i, e);

}

private Entry getEntryAfterMiss(ThreadLocal> key, int i, Entry e) {

Entry[] tab = table;

int len = tab.length;

// 线性探测找到符合的元素,若遇到旧元素则进行清理

while (e != null) {

ThreadLocal> k = e.get();

if (k == key)

return e;

if (k == null)

expungeStaleEntry(i);

else

i = nextIndex(i, len);

e = tab[i];

}

return null;

}

remove方法

remove即将引用清空并调用清理旧元素方法。所以remove不会产生旧元素,当我们确认哪些内容需要移除时优先使用remove方法清理,尽量不要交给GC处理。避免get/set发现旧元素的情况过多。

public void remove() {

ThreadLocalMap m = getMap(Thread.currentThread());

if (m != null)

m.remove(this);

}

private void remove(ThreadLocal> key) {

Entry[] tab = table;

int len = tab.length;

int i = key.threadLocalHashCode & (len-1);

for (Entry e = tab[i];

e != null;

e = tab[i = nextIndex(i, len)]) {

if (e.get() == key) {

e.clear();

expungeStaleEntry(i);

return;

}

}

}

总结

ThreadLocal最大的复杂性在于如何处理旧元素,目的是为了避免内存泄露。

在新增或替换元素成功后,为了尽可能少地在get/set时发现有旧元素的情况,在清理旧元素后多次调用cleanSomeSlots尝试性地发现并清理一些旧元素,为了执行效率,“cleanSome”是“no clean” 不清理和“clean all”全量清理之间一的种平衡。

expungeStaleEntry在清理自己位置上的旧元素的同时也会清理附近的旧元素,为得都是减少get/set发现旧元素的情况。即便如此,在哈希表容量过多时也会全量清理一遍旧元素并扩容。

当确认元素需要清除时,优先使用remove方法。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:催收系统接口设计规范要求(催收业务细则)
下一篇:做接口测试需要知道什么(接口测试要测什么)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~