本篇文章给大家谈谈微服务网关需要单独部署吗,以及微服务为什么要用网关对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
今天给各位分享微服务网关需要单独部署吗的知识,其中也会对微服务为什么要用网关进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
「微服务架构」部署NGINX Plus作为API网关,第1部分 - NGINX
了解着名的Nginx服务器(微服务必不可少的东西)如何用作API网关。
现代应用程序体系结构的核心是HTTP API。 HTTP使应用程序能够快速构建并轻松维护。无论应用程序的规模如何,HTTP API都提供了一个通用接口,从单用途微服务到无所不包的整体。通过使用HTTP,支持超大规模Internet属性的Web应用程序交付的进步也可用于提供可靠和高性能的API交付。
有关API网关对微服务应用程序重要性的精彩介绍,请参阅我们博客上的构建微服务:使用API网关。
作为领先的高性能,轻量级反向代理和负载均衡器,NGINX Plus具有处理API流量所需的高级HTTP处理功能。这使得NGINX Plus成为构建API网关的理想平台。在这篇博文中,我们描述了许多常见的API网关用例,并展示了如何配置NGINX Plus以便以高效,可扩展且易于维护的方式处理它们。我们描述了一个完整的配置,它可以构成生产部署的基础。
注意:除非另有说明,否则本文中的所有信息均适用于NGINX Plus和NGINX开源。
API网关的主要功能是为多个API提供单一,一致的入口点,无论它们在后端如何实现或部署。并非所有API都是微服务应用程序。我们的API网关需要管理现有的API,单块和正在部分过渡到微服务的应用程序。
在这篇博文中,我们引用了一个假设的库存管理API,即“仓库API”。我们使用示例配置代码来说明不同的用例。 Warehouse API是一个RESTful API,它使用JSON请求并生成JSON响应。但是,当部署为API网关时,使用JSON不是NGINX Plus的限制或要求; NGINX Plus与API本身使用的架构风格和数据格式无关。
Warehouse API实现为离散微服务的集合,并作为单个API发布。库存和定价资源作为单独的服务实施,并部署到不同的后端。所以API的路径结构是:
例如,要查询当前仓库库存,客户端应用程序会向/ api / warehouse / inventory发出HTTP GET请求。
使用NGINX Plus作为API网关的一个优点是,它可以执行该角色,同时充当现有HTTP流量的反向代理,负载平衡器和Web服务器。如果NGINX Plus已经是应用程序交付堆栈的一部分,那么通常不需要部署单独的API网关。但是,API网关所期望的某些默认行为与基于浏览器的流量的预期不同。出于这个原因,我们将API网关配置与基于浏览器的流量的任何现有(或未来)配置分开。
为实现这种分离,我们创建了一个支持多用途NGINX Plus实例的配置布局,并为通过CI / CD管道自动配置部署提供了便利的结构。 / etc / nginx下的结果目录结构如下所示。
所有API网关配置的目录和文件名都以api_为前缀。这些文件和目录中的每一个都启用API网关的不同特性和功能,并在下面详细说明。
所有NGINX配置都以主配置文件nginx.conf开头。要读入API网关配置,我们在nginx.conf的http块中添加一个指令,该指令引用包含网关配置的文件api_gateway.conf(下面的第28行)。请注意,默认的nginx.conf文件使用include伪指令从conf.d子目录中引入基于浏览器的HTTP配置(第29行)。本博文广泛使用include指令来提高可读性并实现配置某些部分的自动化。
api_gateway.conf文件定义了将NGINX Plus公开为客户端的API网关的虚拟服务器。此配置公开API网关在单个入口点https://api.example.com/(第13行)发布的所有API,受第16到21行配置的TLS保护。请注意,此配置纯粹是HTTPS - 没有明文HTTP侦听器。我们希望API客户端知道正确的入口点并默认进行HTTPS连接。
此配置是静态的 - 各个API及其后端服务的详细信息在第24行的include伪指令引用的文件中指定。第27到30行处理日志记录默认值和错误处理,并在响应中讨论错误部分如下。
一些API可以在单个后端实现,但是出于弹性或负载平衡的原因,我们通常期望存在多个API。使用微服务API,我们为每个服务定义单独的后端;它们一起作为完整的API。在这里,我们的Warehouse API被部署为两个独立的服务,每个服务都有多个后端。
API网关发布的所有API的所有后端API服务都在api_backends.conf中定义。这里我们在每个块中使用多个IP地址 - 端口对来指示API代码的部署位置,但也可以使用主机名。 NGINX Plus订户还可以利用动态DNS负载平衡,自动将新后端添加到运行时配置中。
配置的这一部分首先定义Warehouse API的有效URI,然后定义用于处理对Warehouse API的请求的公共策略。
Warehouse API定义了许多块。 NGINX Plus具有高效灵活的系统,可将请求URI与配置的一部分进行匹配。通常,请求由最具体的路径前缀匹配,并且位置指令的顺序并不重要。这里,在第3行和第8行,我们定义了两个路径前缀。在每种情况下,$ upstream变量都设置为上游块的名称,该上游块分别代表库存和定价服务的后端API服务。
此配置的目标是将API定义与管理API交付方式的策略分开。为此,我们最小化了API定义部分中显示的配置。在为每个位置确定适当的上游组之后,我们停止处理并使用指令来查找API的策略(第10行)。
使用重写指令将处理移至API策略部分
重写指令的结果是NGINX Plus搜索匹配以/ _warehouse开头的URI的位置块。第15行的位置块使用=修饰符执行完全匹配,从而加快处理速度。
在这个阶段,我们的政策部分非常简单。位置块本身标记为第16行,这意味着客户端无法直接向它发出请求。重新定义$ api_name变量以匹配API的名称,以便它在日志文件中正确显示。最后,请求被代理到API定义部分中指定的上游组,使用$ request_uri变量 - 其中包含原始请求URI,未经修改。
API定义有两种方法 - 广泛而精确。每种API最合适的方法取决于API的安全要求以及后端服务是否需要处理无效的URI。
在warehouse_api_simple.conf中,我们通过在第3行和第8行定义URI前缀来使用Warehouse API的广泛方法。这意味着以任一前缀开头的任何URI都代理到相应的后端服务。使用基于前缀的位置匹配,对以下URI的API请求都是有效的:
如果唯一的考虑是将每个请求代理到正确的后端服务,则广泛的方法提供最快的处理和最紧凑的配置。另一方面,精确的方法使API网关能够通过显式定义每个可用API资源的URI路径来理解API的完整URI空间。采用精确的方法,Warehouse API的以下配置使用精确匹配(=)和正则表达式(〜)的组合来定义每个URI。
此配置更详细,但更准确地描述了后端服务实现的资源。这具有保护后端服务免于格式错误的客户端请求的优点,代价是正常表达式匹配的一些小额外开销。有了这个配置,NGINX Plus接受一些URI并拒绝其他URI无效:
使用精确的API定义,现有的API文档格式可以驱动API网关的配置。可以从OpenAPI规范(以前称为Swagger)自动化NGINX Plus API定义。此博客文章的Gists中提供了用于此目的的示例脚本。
随着API的发展,有时会发生需要更新客户端的重大更改。一个这样的示例是重命名或移动API资源。与Web浏览器不同,API网关无法向其客户端发送命名新位置的重定向(代码301)。幸运的是,当修改API客户端不切实际时,我们可以动态地重写客户端请求。
在下面的示例中,我们可以在第3行看到定价服务以前是作为库存服务的一部分实现的:rewrite指令将对旧定价资源的请求转换为新的定价服务。
动态重写URI意味着当我们最终在第26行代理请求时,我们不能再使用$ request_uri变量(正如我们在warehouse_api_simple.conf的第21行所做的那样)。这意味着我们需要在API定义部分的第9行和第14行使用稍微不同的重写指令,以便在处理切换到策略部分时保留URI。
HTTP API和基于浏览器的流量之间的主要区别之一是如何将错误传达给客户端。当NGINX Plus作为API网关部署时,我们将其配置为以最适合API客户端的方式返回错误。
顶级API网关配置包括一个定义如何处理错误响应的部分。
第27行的指令指定当请求与任何API定义都不匹配时,NGINX Plus会返回错误而不是默认错误。此(可选)行为要求API客户端仅向API文档中包含的有效URI发出请求,并防止未经授权的客户端发现通过API网关发布的API的URI结构。
第28行指的是后端服务本身产生的错误。未处理的异常可能包含我们不希望发送到客户端的堆栈跟踪或其他敏感数据。此配置通过向客户端发送标准化错误来进一步提供保护。
完整的错误响应列表在第29行的include伪指令引用的单独配置文件中定义,其前几行如下所示。如果首选不同的错误格式,并且通过更改第30行上的default_type值以匹配,则可以修改此文件。您还可以在每个API的策略部分中使用单独的include指令来定义一组覆盖默认值的错误响应。
有了这种配置,客户端对无效URI的请求就会收到以下响应。
在没有某种形式的身份验证的情况下发布API以保护它们是不常见的。 NGINX Plus提供了几种保护API和验证API客户端的方法。有关基于IP地址的访问控制列表(ACL),数字证书身份验证和HTTP基本身份验证的信息,请参阅文档。在这里,我们专注于API特定的身份验证方法。
API密钥身份验证
API密钥是客户端和API网关已知的共享密钥。它们本质上是作为长期凭证发布给API客户端的长而复杂的密码。创建API密钥很简单 - 只需编码一个随机数,如本例所示。
在顶级API网关配置文件api_gateway.conf的第6行,我们包含一个名为api_keys.conf的文件,其中包含每个API客户端的API密钥,由客户端名称或其他描述标识。
API密钥在块中定义。 map指令有两个参数。第一个定义了API密钥的位置,在本例中是在$ http_apikey变量中捕获的客户端请求的apikey HTTP头。第二个参数创建一个新变量($ api_client_name)并将其设置为第一个参数与键匹配的行上的第二个参数的值。
例如,当客户端提供API密钥7B5zIqmRGXmrJTFmKa99vcit时,$ api_client_name变量设置为client_one。此变量可用于检查经过身份验证的客户端,并包含在日志条目中以进行更详细的审核。
地图块的格式很简单,易于集成到自动化工作流程中,从现有的凭证存储生成api_keys.conf文件。 API密钥身份验证由每个API的策略部分强制执行。
客户端应在apikey HTTP头中显示其API密钥。如果此标头丢失或为空(第20行),我们发送401响应以告知客户端需要进行身份验证。第23行处理API键与地图块中的任何键都不匹配的情况 - 在这种情况下,api_keys.conf第2行的默认参数将$ api_client_name设置为空字符串 - 我们发送403响应告诉身份验证失败的客户端。
有了这个配置,Warehouse API现在可以实现API密钥身份验证。
JWT身份验证
JSON Web令牌(JWT)越来越多地用于API身份验证。原生JWT支持是NGINX Plus独有的,可以在我们的博客上验证JWT,如使用JWT和NGINX Plus验证API客户端中所述。
本系列的第一篇博客详细介绍了将NGINX Plus部署为API网关的完整解决方案。可以从我们的GitHub Gist仓库查看和下载此博客中讨论的完整文件集。本系列的下一篇博客将探讨更高级的用例,以保护后端服务免受恶意或行为不端的客户端的攻击。
原文:https://dzone.com/articles/deploying-nginx-plus-as-an-api-gateway-part-1-ngin
本文:http://pub.intelligentx.net/deploying-nginx-plus-api-gateway-part-1-nginx
讨论:请加入知识星球或者小红圈【首席架构师圈】
微服务入门|微服务架构怎么设计
将一个单体应用拆分成一组微小的服务组件,每个微小的服务组件运行在自己的进程上,组件之间通过如RESTful API这样的轻量级机制进行交互,这些服务以业务能力为核心,用自动化部署机制独立部署,另外,这些服务可以用不同的语言进行研发,用不同技术来存储数据 。
通过以上的定义描述,我们可以基本确定给出微服务的节特征:
用微服务来进行实践到生产项目中,首先要考虑一些问题。比如下图的微服务业务架构:
在上图图表展示的架构图中,我们假设将业务商户服务A、订单服务B和产品服务C分别拆分为一个微服务应用,单独进行部署。此时,我们面临很多要可能出现的问题要解决,比如:
1、客户端如何访问这些服务?
2、每个服务之间如何进行通信?
3、多个微服务,应如何实现?
4、如果服务出现异常宕机,该如何解决?
以上这些都是问题,需要一个个解决。
在单体应用开发中,所有的服务都是本地的,前端UI界面,移动端APP程序可以直接访问后端服务器程序。
现在按功能拆分成独立的服务,跑在独立的进程中。如下图所示:
此时,后台有N个服务,前台就需要记住管理N个服务,一个服务 下线 、 更新 、 升级 ,前台和移动端APP就要重新部署或者重新发包,这明显不服务我们拆分的理念。尤其是对当下业务需求的飞速发展,业务的变更是非常频繁的。
除了访问管理出现困难以外,N个小服务的调用也是一个不小的网络开销。另外,一般微服务在系统内部,通常是无状态的,而我们的用户在进行业务操作时,往往是跨业务模块进行操作,且需要是有状态的,在此时的这个系统架构中,也无法解决这个问题。传统的用来解决用户登录信息和权限管理通常有一个统一的地方维护管理(OAuth),我们称之为授权管理。
基于以上列出的问题,我们采用一种叫做网关(英文为API Gateway)的技术方案来解决这些问题,网关的作用主要包括:
网关(API Gateway)可以有很多广义的实现办法,可以是一个软硬一体的盒子,也可以是一个简单的MVC框架,甚至是一个Node.js的服务端。他们最重要的作用是为前台(通常是移动应用)提供后台服务的聚合,提供一个统一的服务出口,解除他们之间的耦合,不过API Gateway也有可能成为 单点故障 点或者性能的瓶颈。
最终,添加了网关(API Gateway)的业务架构图变更为如下所示:
所有的微服务都是独立部署,运行在自己的进程容器中,所以微服务与微服务之间的通信就是IPC(Inter Process Communication),翻译为进程间通信。进程间通信的方案已经比较成熟了,现在最常见的有两大类: 同步调用、异步消息调用 。
同步调用
同步调用比较简单,一致性强,但是容易出调用问题,性能体验上也会差些,特别是调用层次多的时候。同步调用的有两种实现方式:分别是 REST 和 RPC
基于REST和RPC的特点,我们通常采用的原则为: 向系统外部暴露采用REST,向系统内部暴露调用采用RPC方式。
异步消息的方式在分布式系统中有特别广泛的应用,他既能减低调用服务之间的耦合,又能成为调用之间的缓冲,确保消息积压不会冲垮被调用方,同时能保证调用方的服务体验,继续干自己该干的活,不至于被后台性能拖慢。需要付出的代价是一致性的减弱,需要接受数据 最终一致性 ,所谓的最终一致性就是只可能不会立刻同步完成,会有延时,但是最终会完成数据同步;还有就是后台服务一般要实现 幂等性 ,因为消息发送由于性能的考虑一般会有重复(保证消息的被收到且仅收到一次对性能是很大的考验)。最后就是必须引入一个独立的 Broker,作为中间代理池。
常见的异步消息调用的框架有:Kafaka、Notify、MessageQueue。
最终,大部分的服务间的调用架构实现如下所示:
在微服务架构中,一般每一个服务都是有多个拷贝,来做负载均衡。一个服务随时可能下线,也可能应对临时访问压力增加新的服务节点。这就出现了新的问题:
这就是服务的发现、识别与管理问题。解决多服务之间的识别,发现的问题一般是通过注册的方式来进行。
具体来说:当服务上线时,服务提供者将自己的服务注册信息注册到某个专门的框架中,并通过心跳维持长链接,实时更新链接信息。服务调用者通过服务管理框架进行寻址,根据特定的算法,找到对应的服务,或者将服务的注册信息缓存到本地,这样提高性能。当服务下线时,服务管理框架会发送服务下线的通知给其他服务。
常见的服务管理框架有:Zookeeper等框架。
如上的问题解决方案有两种具体的实现,分别是: 基于客户端的服务注册与发现 、 基于服务端的服务注册与发现 。
优点是架构简单,扩展灵活,只对服务注册器依赖。缺点是客户端要维护所有调用服务的地址,有技术难度,一般大公司都有成熟的内部框架支持。
优点是所有服务对于前台调用方透明,一般小公司在云服务上部署的应用采用的比较多。
前面提到,单体应用开发中一个很大的风险是,把所有鸡蛋放在一个篮子里,一荣俱荣,一损俱损。而分布式最大的特性就是网络是不可靠的。通过微服务拆分能降低这个风险,不过如果没有特别的保障,结局肯定是噩梦。
因此,当我们的系统是由一系列的服务调用链组成的时候,我们必须确保任一环节出问题都不至于影响整体链路。相应的手段有很多,比如说:
什么是 微服务
微服务架构是一种方法
微服务网关需要单独部署吗,其中单个应用程序由许多松散耦合且可独立部署
微服务网关需要单独部署吗的较小服务组成。
微服务(或微服务架构)是一种云原生架构方法,其中单个应用程序由许多松散耦合且可独立部署的较小组件或服务组成。
这些服务通常
虽然关于微服务的大部分讨论都围绕架构定义和特征展开,但它们的价值可以通过相当简单的业务和组织优势来更普遍地理解:
微服务也可以通过它们 不是 什么来理解。
与微服务架构最常进行的两个比较是单体架构和面向服务的架构 (SOA)。
微服务和单体架构之间的区别在于,微服务由许多较小的、松散耦合的服务组成一个应用程序,而不是大型、紧密耦合的应用程序的单体方法
微服务和 SOA 之间的区别可能不太清楚。
虽然可以在微服务和 SOA 之间进行技术对比,尤其是围绕 企业服务总线 (ESB) 的角色,但更容易将差异视为 范围之一 。
SOA 是企业范围内的一项努力,旨在标准化 组织中 所有 Web 服务相互通信和集成的方式,而微服务架构是特定于应用程序的。
微服务可能至少与开发人员一样受高管和项目负责人的欢迎。
这是微服务更不寻常的特征之一,因为架构热情通常是为软件开发团队保留的。
原因是微服务更好地反映了许多业务领导者希望构建和运行他们的团队和开发流程的方式。
换句话说,微服务是一种架构模型,可以更好地促进所需的操作模型。
在IBM 最近对 1,200 多名开发人员和 IT 主管进行的一项调查中,87% 的微服务用户同意微服务的采用是值得的。
也许微服务最重要的一个特点是,由于服务更小并且可以独立部署,它不再需要国会的法案来更改一行代码或在应用程序中添加新功能。
微服务向组织承诺提供一种解毒剂,以解决与需要大量时间的小改动相关的内心挫败感。
它不需要博士学位。
在计算机科学中看到或理解一种更好地促进速度和敏捷性的方法的价值。
但速度并不是以这种方式设计服务的唯一价值。
一种常见的新兴组织模型是围绕业务问题、服务或产品将跨职能团队聚集在一起。
微服务模型完全符合这一趋势,因为它使组织能够围绕一个服务或一组服务创建小型、跨职能的团队,并让他们以敏捷的方式运行。
微服务的松散耦合还为应用程序建立了一定程度的故障隔离和更好的弹性。
服务的小规模,加上清晰的边界和沟通模式,使新团队成员更容易理解代码库并快速为其做出贡献——在速度和员工士气方面都有明显的好处。
在传统的 n 层架构模式中,应用程序通常共享一个公共堆栈,其中一个大型关系数据库支持整个应用程序。
这种方法有几个明显的缺点——其中最重要的是应用程序的每个组件都必须共享一个公共堆栈、数据模型和数据库,即使对于某些元素的工作有一个清晰、更好的工具。
它造成了糟糕的架构,并且对于那些不断意识到构建这些组件的更好、更有效的方法是可用的开发人员来说是令人沮丧的。
相比之下,在微服务模型中,组件是独立部署的,并通过 REST、事件流和消息代理的某种组合进行通信——因此每个单独服务的堆栈都可以针对该服务进行优化。
技术一直在变化,由多个较小的服务组成的应用程序更容易和更便宜地随着更理想的技术发展而变得可用。
使用微服务,可以单独部署单个服务,但也可以单独扩展它们。由此产生的好处是显而易见的:如果做得正确,微服务比单体应用程序需要更少的基础设施,因为它们只支持对需要它的组件进行精确扩展,而不是在单体应用程序的情况下对整个应用程序进行扩展。
微服务的显着优势伴随着重大挑战。
从单体架构到微服务意味着更多的管理复杂性——更多的服务,由更多的团队创建,部署在更多的地方。
一项服务中的问题可能会导致或由其他服务中的问题引起。
日志数据(用于监控和解决问题)更加庞大,并且在服务之间可能不一致。
新版本可能会导致向后兼容性问题。
应用程序涉及更多的网络连接,这意味着出现延迟和连接问题的机会更多。
DevOps 方法可以解决其中的许多问题,但 DevOps 的采用也有其自身的挑战。
然而,这些挑战并没有阻止非采用者采用微服务——或者采用者深化他们的微服务承诺。
新的 IBM 调查数据 显示,56% 的当前非用户可能或非常可能在未来两年内采用微服务,78% 的当前微服务用户可能会增加他们在微服务上投入的时间、金钱和精力
微服务架构通常被描述为针对 DevOps 和持续集成/持续交付 (CI/CD) 进行了优化,在可以频繁部署的小型服务的上下文中,原因很容易理解。
但另一种看待微服务和 DevOps 之间关系的方式是,微服务架构实际上 需要 DevOps 才能成功。
虽然单体应用程序具有本文前面讨论过的一系列缺点,但它们的好处是它不是一个具有多个移动部件和独立技术堆栈的复杂分布式系统。
相比之下,鉴于微服务带来的复杂性、移动部件和依赖项的大量增加,在部署、监控和生命周期自动化方面没有大量投资的情况下使用微服务是不明智的。
虽然几乎任何现代工具或语言都可以在微服务架构中使用,但有一些核心工具已成为微服务必不可少的边界定义:
微服务的关键要素之一是它通常非常小。
(没有任意数量的代码可以确定某物是否是微服务,但名称中的“微”就在那里。)
当Docker在 2013 年迎来现代容器时代时,它还引入了与微服务最密切相关的计算模型。
由于单个容器没有自己的操作系统的开销,它们比传统的虚拟机更小更轻,并且可以更快地启动和关闭,使其成为微服务架构中更小、更轻的服务的完美匹配.
随着服务和容器的激增,编排和管理大量容器很快成为关键挑战之一。
Kubernetes是一个开源容器编排平台,已成为最受欢迎的编排解决方案之一,因为它做得非常好。
微服务通常通过 API 进行通信,尤其是在首次建立状态时。
虽然客户端和服务确实可以直接相互通信,但 API 网关通常是一个有用的中间层,尤其是当应用程序中的服务数量随着时间的推移而增长时。
API 网关通过路由请求、跨多个服务扇出请求以及提供额外的安全性和身份验证来充当客户端的反向代理。
有多种技术可用于实现 API 网关,包括 API 管理平台,但如果使用容器和 Kubernetes 实现微服务架构,则网关通常使用 Ingress 或最近的Istio 来实现。
虽然最佳实践可能是设计无状态服务,但状态仍然存在,服务需要了解它。
虽然 API 调用通常是为给定服务初始建立状态的有效方式,但它并不是保持最新状态的特别有效方式。
不断的轮询,“
微服务网关需要单独部署吗我们到了吗
微服务网关需要单独部署吗?” 保持服务最新的方法根本不切实际。
相反,有必要将建立状态的 API 调用与消息传递或事件流结合起来,以便服务可以广播状态的变化,而其他相关方可以监听这些变化并进行相应的调整。
这项工作可能最适合通用消息代理,但在某些情况下,事件流平台(例如Apache Kafka)可能更适合。
通过将微服务与事件驱动架构相结合,开发人员可以构建分布式、高度可扩展、容错和可扩展的系统,可以实时消费和处理大量事件或信息。
无服务器架构将一些核心云和微服务模式得出其合乎逻辑的结论。
在无服务器的情况下,执行单元不仅仅是一个小服务,而是一个函数,它通常可以只是几行代码。
将无服务器功能与微服务分开的界限很模糊,但通常认为功能比微服务还要小。
无服务器架构和功能即服务 (FaaS)平台与微服务的相似之处在于,它们都对创建更小的部署单元和根据需求精确扩展感兴趣。
微服务不一定与云计算完全相关,但它们如此频繁地结合在一起有几个重要原因——这些原因超越了微服务成为新应用程序的流行架构风格以及云成为新应用程序的流行托管目的地的原因。
微服务架构的主要优势之一是与单独部署和扩展组件相关的利用率和成本优势。
虽然这些优势在一定程度上仍然存在于本地基础设施中,但小型、独立可扩展的组件与按需、按使用付费的基础设施相结合是可以找到真正成本优化的地方。
其次,也许更重要的是,微服务的另一个主要好处是每个单独的组件都可以采用最适合其特定工作的堆栈。
当您自己管理堆栈扩散时,可能会导致严重的复杂性和开销,但是将支持堆栈作为云服务使用可以大大减少管理挑战。
换句话说,虽然推出自己的微服务基础设施并非不可能,但不可取,尤其是刚开始时。
在微服务架构中,有许多常见且有用的设计、通信和集成模式有助于解决一些更常见的挑战和机遇,包括:
例如,在桌面上使用的应用程序将具有与移动设备不同的屏幕尺寸、显示和性能限制。
BFF 模式允许开发人员使用该界面的最佳选项为每个用户界面创建和支持一种后端类型,而不是尝试支持适用于任何界面但可能会对前端性能产生负面影响的通用后端。
例如,在电子商务网站上,产品对象可能通过产品名称、类型和价格来区分。
聚合是应被视为一个单元的相关实体的集合。
因此,对于电子商务网站,订单将是买家订购的产品(实体)的集合(集合)。
这些模式用于以有意义的方式对数据进行分类。
在微服务架构中,服务实例会因伸缩、升级、服务故障甚至服务终止而动态变化。
这些模式提供了发现机制来应对这种短暂性。
负载平衡可以通过使用 健康 检查和服务故障作为重新平衡流量的触发器来使用服务发现模式。
适配器模式的目的是帮助翻译不兼容的类或对象之间的关系。
依赖第三方 API 的应用程序可能需要使用适配器模式来确保应用程序和 API 可以通信。
这个色彩缤纷的名字指的是藤蔓(微服务)如何随着时间的推移慢慢地超越并扼杀一棵树(单体应用程序)。
虽然有很多模式可以很好地完成微服务,但同样数量的模式可以很快让任何开发团队陷入困境。
其中一些——改写为微服务“不要”——如下:
一旦应用程序变得太大且难以轻松更新和维护,微服务是一种管理复杂性的方法。
只有当您感觉到单体架构的痛苦和复杂性开始蔓延时,才值得考虑如何将该应用程序重构为更小的服务。
在
微服务网关需要单独部署吗你感受到那种痛苦之前,你甚至没有真正拥有需要重构的单体。
尝试在没有 a) 适当的部署和监控自动化或 b) 托管云服务来支持您现在庞大的异构基础设施的情况下进行微服务,会带来很多不必要的麻烦。
省去你自己的麻烦,这样你就可以把时间花在担心状态上。
最好倾向于更大的服务,然后只在它们开始开发微服务解决的特征时才将它们分开——即部署更改变得困难和缓慢,通用数据模型变得过于复杂,或者不同部分服务有不同的负载/规模要求。
微服务和 SOA 之间的区别在于,微服务项目通常涉及重构应用程序以便更易于管理,而 SOA 关注的是改变 IT 服务在企业范围内的工作方式。
一个演变成 SOA 项目的微服务项目可能会因自身的重量而崩溃。
你最好从一个你可以处理的速度开始,避免复杂性,并尽可能多地使用现成的工具。
微服务 六:服务网关
服务除了内部相互之间调用和通信之外,最终要以某种方式暴露出去,才能让外界系统(例如客户的浏览器、移动设备等等)访问到,这就涉及服务的前端路由,对应的组件是服务网关(Service Gateway),见图(15),网关是连接企业内部和外部系统的一道门,有如下关键作用:
服务反向路由,网关要负责将外部请求反向路由到内部具体的微服务,这样虽然企业内部是复杂的分布式微服务结构,但是外部系统从网关上看到的就像是一个统一的完整服务,网关屏蔽了后台服务的复杂性,同时也屏蔽了后台服务的升级和变化。安全认证和防爬虫,所有外部请求必须经过网关,网关可以集中对访问进行安全控制,比如用户认证和授权,同时还可以分析访问模式实现防爬虫功能,网关是连接企业内外系统的安全之门。
限流和容错,在流量高峰期,网关可以限制流量,保护后台系统不被大流量冲垮,在内部系统出现故障时,网关可以集中做容错,保持外部良好的用户体验。
监控,网关可以集中监控访问量,调用延迟,错误计数和访问模式,为后端的性能优化或者扩容提供数据支持。
日志,网关可以收集所有的访问日志,进入后台系统做进一步分析。
图(15)gateway服务图
除以上基本能力外,网关还可以实现线上引流,线上压测,线上调试(Surgical debugging),金丝雀测试(Canary Testing),数据中心双活(Active-Active HA)等高级功能。
网关通常工作在7层,有一定的计算逻辑,一般以集群方式部署,前置LB进行负载均衡。
开源的网关组件有Netflix的Zuul,其工作原理如下图。
图(16)zuul工作原理图
在介绍过服务注册表和网关等组件之后,我们可以通过一个简化的微服务架构图(17)来更加直观地展示整个微服务体系内的服务注册发现和路由机制,该图假定采用进程内LB服务发现和负载均衡机制。在图(17)的微服务架构中,服务简化为两层,后端通用服务(也称中间层服务Middle Tier Service)和前端服务(也称边缘服务Edge Service,前端服务的作用是对后端服务做必要的聚合和裁剪后暴露给外部不同的设备,如PC,Pad或者Phone)。后端服务启动时会将地址信息注册到服务注册表,前端服务通过查询服务注册表就可以发现然后调用后端服务;前端服务启动时也会将地址信息注册到服务注册表,这样网关通过查询服务注册表就可以将请求路由到目标前端服务,这样整个微服务体系的服务自注册自发现和软路由就通过服务注册表和网关串联起来了。如果以面向对象设计模式的视角来看,网关类似Proxy代理或者Façade门面模式,而服务注册表和服务自注册自发现类似IoC依赖注入模式,微服务可以理解为基于网关代理和注册表IoC构建的分布式系统。
图(17)简化的微服务架构图
为什么在微服务架构下,服务网关和数据库不能部署在虚拟机上
最近开发了一基于springcloud的微服务架构的门户项目,因为客户对系统性能有要求,所以楼主对系统的一些api接口进行了大量压力测试。在压测过程中,发现接口的性能瓶颈之一是服务网关和数据库部署在虚机上,所以本文将分享内容分为两部分
性能压测思路是从软硬件负载 f5,nginx,到容器化平台k8s、docker、zuul网关,再到数据存储es、mysql、mongodb、redis,进行全面测试。
性能压测汇总
部分接口压测结果
其中值得关注的是,用一台zuul网关节点和一个业务节点压测空接口,发现一个有意思现象:
空接口压测不走zuul,一个业务节点tps能达到 32000, 走zuul网关,一个业务节点空接口tps只有11000,性能损耗64%。
当时就感觉zuul网关在我心中高大的形象碎了一地,但是没办法,性能不达标必须要优化。所以楼主查了很多资料,也问过一些docker和k8s的容器化平台大牛,总结出两点经验:
所以楼主向公司申请物理机,继续性能压测,当然这不是重点,重点是接下来要讲的:为什么服务网关和数据库不能部署到虚拟机上 。
虚拟机的特点
io开销
我们知道,不管虚机上部署了多少个应用,一旦涉及到数据的存储,如果采用虚机部署数据库,会带来不必要的网络io开销。因为虚拟机在调度大量物理的cpu和内存、特别是磁盘IO时,必须经过虚拟机和物理机两层网络io读写开销操作,是非常耗系统性能的。
一般情况下,使用虚拟机部署应用,其性能衰减约20%左右,这不是优化代码能解决的。
共享物理机资源
因为虚拟机在cpu资源、网络等方面共享物理机资源,虚拟机之间会存在竞争物理机资源,造成程序不稳定情况。
docker容器部署
更要命的是,如果数据库和zuul网关部署到容器(实质也是虚拟机)里,那么网络io读写变成docker(虚拟机)到虚机,再到物理机三层访问,无形之中又增加了io读写性能开销。尤其是对于请求吞吐量要求很高的服务网关zuul,是不能容忍的。
所以虚机对于IO密集型以及对延迟要求很高的业务场景不合适。
另外,早期的时候,作为一名架构师需要尽早的规划好服务网关和数据库的物理部署方式以及软硬件性能要求。
微服务有什么作用?
维基上对微服务
微服务网关需要单独部署吗的定义为
微服务网关需要单独部署吗:一种软件开发技术- 面向服务
微服务网关需要单独部署吗的体系结构(SOA)架构样式的一种变体
微服务网关需要单独部署吗,它提倡将单一应用程序划分成一组小的服务,服务之间互相协调、互相配合,为用户提供最终价值。
微服务的最重要的单一特征可能是,由于服务较小且可独立部署,因此不再需要繁琐的行动才能更改应用程序中的一行文字。
在微服务模型中,组件是独立部署的,并通过REST,事件流和消息代理的某种组合进行通信-因此,可以针对该服务优化每个单独服务的堆栈。技术一直在变化,由多个较小的服务组成的应用程序随着更理想的技术的发展而变得更容易且成本更低。
使用微服务,可以单独部署单个服务,但是也可以单独扩展它们。由此带来的好处是显而易见的:如果正确完成,微服务比单片应用程序所需的基础结构要少,因为微服务仅支持对需要它的组件进行精确缩放,而对于单片应用程序则不需要整个应用程序。
比如像HC服务网格是基于Istio及容器技术的微服务治理平台,以无侵入方式为多语言、不同部署形态的异构应用提供服务治理、服务监控和安全控制等微服务管理能力。能够将服务通信、观测与安全能力下沉到基础设施层,降低分布式应用开发复杂度,为应用运维减负,推动企业应用整体向服务治理平台迁移,提升IT系统的整体承载能力、高可用能力。
关于微服务网关需要单独部署吗和微服务为什么要用网关的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
微服务网关需要单独部署吗的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于微服务为什么要用网关、微服务网关需要单独部署吗的信息别忘了在本站进行查找喔。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
暂时没有评论,来抢沙发吧~