Python进程池multiprocessing.Pool的用法(python multiprocessing pool queue)

网友投稿 359 2022-06-19


一、multiprocessing模块

multiprocessing模块提供了一个Process类来代表一个进程对象,multiprocessing模块像线程一样管理进程,这个是multiprocessing的核心,它与threading很相似,对多核CPU的利用率会比threading好的多

看一下Process类的构造方法:

__init__(self, group=None, target=None, name=None, args=(), kwargs={})

参数说明: 

group:进程所属组(基本不用) 

target:表示调用对象

args:表示调用对象的位置参数元组

name:别名 

kwargs:表示调用对象的字典

示例:

运行结果:

通过打印numList可以看出当前进程结束后,再开始下一个进程

注意: 

在Windows上要想使用进程模块,就必须把有关进程的代码写在当前.py文件的if __name__ == ‘__main__’ :语句的下面,才能正常使用Windows下的进程模块。Unix/Linux下则不需要

二、Pool类

Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求。如果池满,请求就会告知先等待,直到池中有进程结束,才会创建新的进程来执行这些请求

下面介绍一下multiprocessing 模块下的Pool类下的几个方法:

1.apply()

函数原型:apply(func[, args=()[, kwds={}]])

该函数用于传递不定参数,同python中的apply函数一致,主进程会被阻塞直到函数执行结束(不建议使用,并且3.x以后不再出现)

2.apply_async

函数原型:apply_async(func[, args=()[, kwds={}[, callback=None]]])

与apply用法一致,但它是非阻塞的且支持结果返回后进行回调

3.map()

函数原型:map(func, iterable[, chunksize=None])

Pool类中的map方法,与内置的map函数用法行为基本一致,它会使进程阻塞直到结果返回

注意:虽然第二个参数是一个迭代器,但在实际使用中,必须在整个队列都就绪后,程序才会运行子进程

4.map_async()

函数原型:map_async(func, iterable[, chunksize[, callback]])

与map用法一致,但是它是非阻塞的

5.close()

关闭进程池(pool),使其不再接受新的任务

6.terminal()

结束工作进程,不再处理未处理的任务

7.join()

主进程阻塞等待子进程的退出, join方法要在close或terminate之后使用

示例1--使用map()函数

运行结果:

1、map函数中testFL为可迭代对象--列表

2、当创建3个进程时,会一次打印出3个结果“1,4,9”,当当创建2个进程时,会一次打印出2个结果“1,4”,以此类推,当创建多余6个进程时,会一次打印出所有结果

3、如果使用Pool(),不传入参数,可以创建一个动态控制大小的进程池

从结果可以看出,并发执行的时间明显比顺序执行要快很多,但是进程是要耗资源的,所以平时工作中,进程数也不能开太大。 对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),让其不再接受新的Process了

示例2--使用map()_async函数

运行结果:

从结果可以看出,map_async()和map()用时相同。目前还没有看出两者的区别,后面知道后再完善

示例3--使用apply()函数

运行结果:

可见,使用apply()方法,并行执行和顺序执行用时相同,经过试验,进程数目增大也不会减少并行执行的时间

原因:以阻塞的形式产生进程任务,生成1个任务进程并等它执行完出池,第2个进程才会进池,主进程一直阻塞等待,每次只执行1个进程任务

示例4--使用apply_async()函数

运行结果:

可见,使用apply_async()方法,并行执行时间与使用map()、map_async()方法相同

注意:

map_async()和map()方法,第2个参数可以是列表也可以是元祖,如下图:

而使用apply()和apply_async()方法时,第2个参数只能传入元祖,传入列表进程不会被执行,如下图:

三、apply_async()方法callback参数的用法

示例:

运行结果:

map_async()方法callback参数的用法与apply_async()相同

四、使用进程池并关注结果

运行结果:

五、多进程执行多个函数

使用apply_async()或者apply()方法,可以实现多进程执行多个方法

示例:

运行结果:

六、其他

1、获取当前计算机的CPU数量


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:python基础(26):类的成员(字段、方法、属性)
下一篇:python发送邮件(python 发邮件)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~