本篇文章给大家谈谈java的线程状态转换图,以及进程的基本状态转换图对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
今天给各位分享java的线程状态转换图的知识,其中也会对进程的基本状态转换图进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
线程状态有哪些,它们之间是如何转换的
Java中的线程的生命周期大体可分为5种状态。
1. 新建(NEW)java的线程状态转换图:新创建java的线程状态转换图了一个线程对象。
2. 可运行(RUNNABLE):线程对象创建后,其java的线程状态转换图他线程(比如main线程)调用了该对象的start()方法。该状态的线程位于可运行线程池中,等待被线程调度选中,获取cpu 的使用权 。
3. 运行(RUNNING):可运行状态(runnable)的线程获得了cpu 时间片(timeslice) ,执行程序代码。
4. 阻塞(BLOCKED):阻塞状态是指线程因为某种原因放弃了cpu 使用权,也即让出了cpu timeslice,暂时停止运行。直到线程进入可运行(runnable)状态,才有机会再次获得cpu timeslice 转到运行(running)状态。阻塞的情况分三种:
(一). 等待阻塞:运行(running)的线程执行o.wait()方法,JVM会把该线程放入等待队列(waitting queue)中。
(二). 同步阻塞:运行(running)的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会把该线程放入锁池(lock pool)中。
(三). 其他阻塞:运行(running)的线程执行Thread.sleep(long ms)或t.join()方法,或者发出了I/O请求时,JVM会把该线程置为阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入可运行(runnable)状态。
5. 死亡(DEAD):线程run()、main() 方法执行结束,或者因异常退出了run()方法,则该线程结束生命周期。死亡的线程不可再次复生。
线程的状态图:
线程的状态及状态间的转换图
一、线程的概念
一般来说,我们把正在计算机中执行的程序叫做"进程"(Process) ,而不将其称为程序(Program)。所谓"线程"(Thread),是"进程"中某个单一顺序的控制流。
新兴的操作系统,如Mac,Windows NT,Windows 95等,大多采用多线程的概念,把线程视为基本执行单位。线程也是Java中的相当重要的组成部分之一。
甚至最简单的Applet也是由多个线程来完成的。在Java中,任何一个Applet的paint()和update()方法都是由AWT(Abstract Window Toolkit)绘图与事件处理线程调用的,而Applet 主要的里程碑方法——init(),start(),stop()和destory() ——是由执行该Applet的应用调用的。
单线程的概念没有什么新的地方,真正有趣的是在一个程序中同时使用多个线程来完成不同的任务。某些地方用轻量进程(Lightweig ht Process)来代替线程,线程与真正进程的相似性在于它们都是单一顺序控制流。然而线程被认为轻量是由于它运行于整个程序的上下文内,能使用整个程序共有的资源和程序环境。
作为单一顺序控制流,在运行的程序内线程必须拥有一些资源作为必要的开销。例如,必须有执行堆栈和程序计数器。在线程内执行的代码只在它的上下文中起作用,因此某些地方用"执行上下文"来代替"线程"。
二、线程属性
为了正确有效地使用线程,必须理解线程的各个方面并了解Java 实时系统。必须知道如何提供线程体、线程的生命周期、实时系统如 何调度线程、线程组、什么是幽灵线程(Demo nThread)。
(1)线程体
所有的操作都发生在线程体中,在Java中线程体是从Thread类继承的run()方法,或实现Runnable接口的类中的run()方法。当线程产生并初始化后,实时系统调用它的run()方法。run()方法内的代码实现所产生线程的行为,它是线程的主要部分。
(2)线程状态
附图表示了线程在它的生命周期内的任何时刻所能处的状态以及引起状态改变的方法。这图并不是完整的有限状态图,但基本概括了线程中比较感兴趣和普遍的方面。以下讨论有关线程生命周期以此为据。
●新线程态(New Thread)
产生一个Thread对象就生成一个新线程。当线程处于"新线程"状态时,仅仅是一个空线程对象,它还没有分配到系统资源。因此只能启动或终止它。任何其他操作都会引发异常。
●可运行态(Runnable)
start()方法产生运行线程所必须的资源,调度线程执行,并且调用线程的run()方法。在这时线程处于可运行态。该状态不称为运行态是因为这时的线程并不总是一直占用处理机。特别是对于只有一个处理机的PC而言,任何时刻只能有一个处于可运行态的线程占用处理 机。Java通过调度来实现多线程对处理机的共享。
●非运行态(Not Runnable)
当以下事件发生时,线程进入非运行态。
①suspend()方法被调用;
②sleep()方法被调用;
③线程使用wait()来等待条件变量;
④线程处于I/O等待。
●死亡态(Dead)
当run()方法返回,或别的线程调用stop()方法,线程进入死亡态 。通常Applet使用它的stop()方法来终止它产生的所有线程。
(3)线程优先级
虽然我们说线程是并发运行的。然而事实常常并非如此。正如前面谈到的,当系统中只有一个CPU时,以某种顺序在单CPU情况下执行多线程被称为调度(scheduling)。Java采用的是一种简单、固定的调度法,即固定优先级调度。这种算法是根据处于可运行态线程的相对优先级来实行调度。当线程产生时,它继承原线程的优先级。在需要时可对优先级进行修改。在任何时刻,如果有多条线程等待运行,系统选择优先级最高的可运行线程运行。只有当它停止、自动放弃、或由于某种原因成为非运行态低优先级的线程才能运行。如果两个线程具有相同的优先级,它们将被交替地运行。
Java实时系统的线程调度算法还是强制性的,在任何时刻,如果一个比其他线程优先级都高的线程的状态变为可运行态,实时系统将选择该线程来运行。
(4)幽灵线程
任何一个Java线程都能成为幽灵线程。它是作为运行于同一个进程内的对象和线程的服务提供者。例如,HotJava浏览器有一个称为" 后台图片阅读器"的幽灵线程,它为需要图片的对象和线程从文件系统或网络读入图片。
幽灵线程是应用中典型的独立线程。它为同一应用中的其他对象和线程提供服务。幽灵线程的run()方法一般都是无限循环,等待服务请求。
(5)线程组
每个Java线程都是某个线程组的成员。线程组提供一种机制,使得多个线程集于一个对象内,能对它们实行整体操作。譬如,你能用一个方法调用来启动或挂起组内的所有线程。Java线程组由ThreadGroup类实现。
当线程产生时,可以指定线程组或由实时系统将其放入某个缺省的线程组内。线程只能属于一个线程组,并且当线程产生后不能改变它所属的线程组。
三、多线程程序
对于多线程的好处这就不多说了。但是,它同样也带来了某些新的麻烦。只要在设计程序时特别小心留意,克服这些麻烦并不算太困难。
(1)同步线程
许多线程在执行中必须考虑与其他线程之间共享数据或协调执行状态。这就需要同步机制。在Java中每个对象都有一把锁与之对应。但Java不提供单独的lock和unlock操作。它由高层的结构隐式实现, 来保证操作的对应。(然而,我们注意到Java虚拟机提供单独的monito renter和monitorexit指令来实现lock和unlo
ck操作。)
synchronized语句计算一个对象引用,试图对该对象完成锁操作, 并且在完成锁操作前停止处理。当锁操作完成synchronized语句体得到执行。当语句体执行完毕(无论正常或异常),解锁操作自动完成。作为面向对象的语言,synchronized经常与方法连用。一种比较好的办法是,如果某个变量由一个线程赋值并由别的线程引用或赋值,那么所有对该变量的访问都必须在某个synchromized语句或synchronized方法内。
现在假设一种情况:线程1与线程2都要访问某个数据区,并且要求线程1的访问先于线程2, 则这时仅用synchronized是不能解决问题的。这在Unix或Windows NT中可用Simaphore来实现。而Java并不提供。在Java中提供的是wait()和notify()机制。使用如下:
synchronized method-1(…){ call by thread 1.
‖access data area;
available=true;
notify()
}
synchronized method-2(…){‖call by thread 2.
while(!available)
try{
wait();‖wait for notify().
}catch (Interrupted Exception e){
}
‖access data area
}
其中available是类成员变量,置初值为false。
如果在method-2中检查available为假,则调用wait()。wait()的作用是使线程2进入非运行态,并且解锁。在这种情况下,method-1可以被线程1调用。当执行notify()后。线程2由非运行态转变为可运行态。当method-1调用返回后。线程2可重新对该对象加锁,加锁成功后执行wait()返回后的指令。这种机制也能适用于其他更复杂的情况。
(2)死锁
如果程序中有几个竞争资源的并发线程,那么保证均衡是很重要的。系统均衡是指每个线程在执行过程中都能充分访问有限的资源。系统中没有饿死和死锁的线程。Java并不提供对死锁的检测机制。对大多数的Java程序员来说防止死锁是一种较好的选择。最简单的防止死锁的方法是对竞争的资源引入序号,如果一个线程需要几个资源,那么它必须先得到小序号的资源,再申请大序号的资源。
四、线程和进程的比较
进程是资源分配的基本单位。所有与该进程有关的资源,都被记录在进程控制块PCB中。以表示该进程拥有这些资源或正在使用它们。
另外,进程也是抢占处理机的调度单位,它拥有一个完整的虚拟地址空间。
与进程相对应,线程与资源分配无关,它属于某一个进程,并与进程内的其他线程一起共享进程的资源。
当进程发生调度时,不同的进程拥有不同的虚拟地址空间,而同一进程内的不同线程共享同一地址空间。
线程只由相关堆栈(系统栈或用户栈)寄存器和线程控制表TCB组成。寄存器可被用来存储线程内的局部变量,但不能存储其他线程的相关变量。
发生进程切换与发生线程切换时相比较,进程切换时涉及到有关资源指针的保存以及地址空间的变化等问题;线程切换时,由于同不进程内的线程共享资源和地址 空间,将不涉及资源信息的保存和地址变化问题,从而减少了操作系统的开销时间。而且,进程的调度与切换都是由操作系统内核完成,而线程则既可由操作系统内 核完成,也可由用户程序进行。
五、线程的适用范围
典型的应用
1.服务器中的文件管理或通信控制
2.前后台处理
3.异步处理
六、线程的执行特性
一个线程必须处于如下四种可能的状态之一:
初始态:一个线程调用了new方法之后,并在调用start方法之前的所处状态。在初始态中,可以调用start和stop方法。
Runnable:一旦线程调用了start 方法,线程就转到Runnable 状态,注意,如果线程处于Runnable状态,它也有可能不在运行,这是因为还有优先级和调度问题。
阻塞/ NonRunnable:线程处于阻塞/NonRunnable状态,这是由两种可能性造成的:要么是因挂起而暂停的,要么是由于某些原因而阻塞的,例如包括等待IO请求的完成。 退出:线程转到退出状态,这有两种可能性,要么是run方法执行结束,要么是调用了stop方法。
最后一个概念就是线程的优先级,线程可以设定优先级,高优先级的线程可以安排在低优先级线程之前完成。一个应用程序可以通过使用线程中的方法setPriority(int),来设置线程的优先级大小。
线程有5种基本操作:
派生:线程在进程内派生出来,它即可由进程派生,也可由线程派生。
阻塞(Block):如果一个线程在执行过程中需要等待某个事件发生,则被阻塞。
激活(unblock):如果阻塞线程的事件发生,则该线程被激活并进入就绪队列。
调度(schedule):选择一个就绪线程进入执行状态。
结束(Finish):如果一个线程执行结束,它的寄存器上下文以及堆栈内容等将被释放。
七、线程的分类
线程有两个基本类型:
用户级线程:管理过程全部由用户程序完成,操作系统内核心只对进程进行管理。
系统级线程(核心级线程):由操作系统内核进行管理。操作系统内核给应用程序提供相应的系统调用和应用程序接口API,以使用户程序可以创建、执行、撤消线程。
附:线程举例
1. SUN Solaris 2.3
Solaris支持内核线程、轻权进程和用户线程。一个进程可有大量用户线程;大量用户线程复用少量的轻权进程,轻权进程与内核线程一一对应。
用户级线程在调用核心服务时(如文件读写),需要“捆绑(bound)”在一个LWP上。永久捆绑(一个LWP固定被一个用户级线程占用,该LWP移到LWP池之外)和临时捆绑(从LWP池中临时分配一个未被占用的LWP)。
在调用系统服务时,如果所有LWP已被其他用户级线程所占用(捆绑),则该线程阻塞直到有可用的LWP。
如果LWP执行系统线程时阻塞(如read()调用),则当前捆绑在LWP上的用户级线程也阻塞。
¨ 有关的C库函数
/* 创建用户级线程 */
int thr_create(void *stack_base, size_t stack_size,
void *(*start_routine)(void *), void *arg, long flags,
thread_t *new_thread_id);
其中flags包括:THR_BOUND(永久捆绑), THR_NEW_LWP(创建新LWP放入LWP池),若两者同时指定则创建两个新LWP,一个永久捆绑而另一个放入LWP池。
² 有关的系统调用
/* 在当前进程中创建LWP */
int _lwp_create(ucontext_t *contextp, unsigned long flags,
lwpid_t *new_lwp_id);
/* 构造LWP上下文 */
void _lwp_makecontext(ucontext_t *ucp,
void (*start_routine)( void *), void *arg,
void *private, caddr_t stack_base, size_t stack_size);
/* 注意:没有进行“捆绑”操作的系统调用 */
2. Windows NT
NT线程的上下文包括:寄存器、核心栈、线程环境块和用户栈。
NT线程状态
(1) 就绪状态:进程已获得除处理机外的所需资源,等待执行。
(2) 备用状态:特定处理器的执行对象,系统中每个处理器上只能有一个处于备用状态的线程。
(3) 运行状态:完成描述表切换,线程进入运行状态,直到内核抢先、时间片用完、线程终止或进行等待状态。
(4) 等待状态:线程等待对象句柄,以同步它的执行。等待结束时,根据优先级进入运行、就绪状态。
(5) 转换状态:线程在准备执行而其内核堆栈处于外存时,线程进入转换状态;当其内核堆栈调回内存,线程进入就绪状态。
(6) 终止状态:线程执行完就进入终止状态;如执行体有一指向线程对象的指针,可将线程对象重新初始化,并再次使用。
NT线程的有关API
CreateThread()函数在调用进程的地址空间上创建一个线程,以执行指定的函数;返回值为所创建线程的句柄。
ExitThread()函数用于结束本线程。
SuspendThread()函数用于挂起指定的线程。
ResumeThread()函数递减指定线程的挂起计数,挂起计数为0时,线程恢复执行。
JAVA中,线程有哪五个基本状态?他们之间如何让转化?并简述线程周期。
java中,每个线程都需经历新生、就绪、运行、阻塞和死亡五种状态,线程从新生到死亡的状态变化称为生命周期。
用new运算符和Thread类或其子类建立一个线程对象后,该线程就处于新生状态。
线程的生命周期,把图转化为文字就是:
1、线程通过new方法创建,调用start,线程进入就绪状态,等待系统的调度(时间片轮转调度)。当系统调度,进入运行状态。正常结束或者异常退出,进程进入死亡状态。
2、处于运行状态的线程若遇到sleep,则线程进入睡眠状态,不会让出资源锁,sleep结束,线程转为就绪状态,等待系统重新调度。
3、处于运行状态的线程可能在等待io,也可能进入挂起状态。io完成,转为就绪状态。
4、处于运行状态的线程yield,线程转为就绪状态。(yield只让给权限比自己高的)
5、处于运行状态的线程遇到wait,线程处于等待状态,需要notify()/notifyALL来唤醒线程,唤醒后的线程处于锁定状态,获取了“同步锁”,之后,线程才转为就绪状态。处于运行的线程synchronized,加上后 变成同步操作。处于锁定状态,获取了“同步锁”,之后,线程才转为就绪状态。
JAVA线程的机制有哪些?
Java的线程机制 摘 要: 多线程机制是Java的重要技术,阐述了线程和进程的差别;Java中线程4个状态之间的转换;并结合例子说明了两种创建线程的方法。 线程是指程序中能顺序执行的一个序列。一个线程只有一个入口点� 但可能有几个出口点� 不过,每个时刻的执行点总是只有一个。线程是不能独立运行的程序,而只是某个整体程序内部的一个顺序执行流。 多线程是Java的一个重要特点。如果一个程序是单线程的,那么,任何时刻都只有一个执行点。这种单线程执行方法使系统运行效率低,而且,由于必须依靠中断来处理输入/输出。所以,当出现频繁输入/输出或者有优先级较低的中断请求时,实时性就变得很差。多线程系统可以避免这个缺点。所谓多线程,就是通过系统的调度使几个具有不同功能的程序流即线程同时并行地运行。 在单处理器计算机系统中,实际上是不可能使多个线程真正并行运行的,而要通过系统用极短的时间、极快的速度对多个线程进行切换,宏观上形成多个线程并发执行的效果。 1 线程和进程机制上的差别 线程和进程很相象,它们都是程序的一个顺序执行序列,但两者又有区别。进程是一个实体,每个进程有自己独立的状态,并有自己的专用数据段,创建进程时, 必须建立和复制其专用数据段,线程则互相共享数据段。同一个程序中的所有线程只有一个数据段, 所以, 创建线程时不必重新建立和复制数据段。由于数据段建立和复制这方面的差异,使线程的建立和线程间的切换速度大大优于进程,另一方面,线程又具备进程的大多数优点。 假设银行系统办理存款和取款手续,将帐本看成数据段。如果按进程这种机制,那么,当储户去存/取款时,银行应先把帐本复制一遍,为储户建立一个独立的帐本再结算。如果按线程机制, 那么,银行里所有的出纳员都用同一个帐本,储户来办存/取款时,也从这个帐本直接结算。用线程机制省去了数据段复制这一步显然是线程独具的特点。 由于多个线程共享一个数据段,所以,也出现了数据访问过程的互斥和同步问题,这使系统管理功能变得相对复杂。 总的来说,一个多线程系统在提高系统的输入/输出速度、有效利用系统资源、改善计算机通信功能以及发挥多处理器硬件功能方面显示了很大优势。因此,一些最新的操作系统如Windows95、Windows98、Windows NT等都提供了对多线程的支持。但是,在多线程操作系统下设计多线程的程序仍然是一个比较复杂和困难的工作。由于需要解决对数据段的共享,所以,原则上应该从程序设计角度采用加锁和释放措施,稍有不慎,便会使系统产生管理上的混乱。 而Java从语言一级提供对多线程的支持,这样,可由语言和运行系统联合提供对共享数据段的管理功能和同步机制,使得多线程并行程序设计相对比较容易。 2 Java线程的生命周期 每个线程都是和生命周期相联系的,一个生命周期含有多个状态,这些状态间可以互相转化。 Java的线程的生命周期可以分为4个状态;创建(new)状态;可运行(runnable)状态;不执行(notrunnable)状态;消亡(dead)状态。 创建状态是指创建一个线程对应的对象的过程,Java系统中,些对象都是从Java.lang包内一个称为Thread的类用关键字new创建的。刚创建的线程不能执行,必须向系统进行注册、分配必要的资源后才能进入可运行状态,这个步骤是由start操作完成的,而处于可运行状态的线程也未必一定处于运行中,它有可能由于外部的I/O请求而处于不运行状态。进入消亡状态后,此线程就不再存在了。 一个线程创建之后,总是处于其生命周期的4个状态之一中,线程的状态表明此线程当前正在进行的活动,而线程的状态是可以通过程序来进行控制的,就是说,可以对线程进行操作来改变状态。 这些操作包括启动(start)、终止(stop)、睡眠(sleep)、挂起(suspend)、恢复(resume)、等待(wait)和通知(notify)。每一个操作都对应了一个方法� 这些方法是由软件包Java.lang提供的。通过各种操作,线程的4个状态之间可按图1所示进行转换。 2.1 创建(new)状态 如果创建了一个线程而没有启动它,那么,此线程就处于创建状态。比如,下述语句执行以后,使系统有了一个处于创建状态的线程myThread:� Thread myThread=new MyThreadClass(); 其中,MyThreadClass()是Thread的子类,而Thread是由Java系统的Java.lang软件包提供的。处于创建状态的线程还没有获得应有的资源,所以,这是一个空的线程,线程只有通过启动后,系统才会为它分配资源。对处于创建状态的线程可以进行两种操作: 一是启动(start)操作,使其进入可运行状态;二是终止(stop)操作,使其进入消亡状态。如果进入到消亡状态,那么,此后这个线程就不能进入其它状态,也就是说,它不复存在了。 start方法是对应启动操作的方法,其具体功能是为线程分配必要的系统资源,将线程设置为可运行状态,从而可以使系统调度这个线程。 2.2 可运行(runnable)状态 如果对一个处于创建状态的线程进行启动操作,则此线程便进入可运行状态。比如,用下列语句� myThread.start();� � 则使线程myThread进入可运行状态。上述语句实质上是调用了线程体即run()方法,注意,run()方法包含在myThread线程中,也就是先由java.lang包的Thread类将run()方法传递给子类MyThreadClass(),再通过创建线程由子类MyThreadClass,传递给线程myThread。 线程处于可运行状态只说明它具备了运行条件,但可运行状态并不一定是运行状态,因为在单处理器系统中运行多线程程序,实际上在一个时间点只有一个线程在运行,而系统中往往有多个线程同时处于可运行状态,系统通过快速切换和调度使所有可运行线程共享处理器,造成宏观上的多线程并发运行。可见,一个线程是否处于运行状, 除了必须处于可运行状态外,还取决于系统的调度。 在可运行状态可以进行多种操作,最通常的是从run()方法正常退出而使线程结束,进入消亡状态。 此, 还可以有如下操作� 挂起操作,通过调用suspend方法来实现; 睡眠操作,通过调用sleep方法来实现; 等待操作,通过调用wait方法来实现; 退让操作,通过调用yield方法来实现; 终止操作,通过调用stop方法来实现。 前面三种操作都会使一个处于可运行状态的线程进入不可运行状态。比如,仍以myThread线程为例,当其处于可运行状态后,再用如下语句� myThread.sleep (5000); 则调用sleep方法使myThread线程睡眠5s(5000ms)。这5s内,此线程不能被系统调度运行,只有过5s后,myThread线程才会醒来并自动回到可运行状态。 如果一个线程被执行挂起操作而转到不可运行状态,则必须通过调用恢复(resume)操作,才能使这个线程再回到可运行状态。 退让操作是使某个线程把CPU控制权提前转交给同级优先权的其他线程。 对可运行状态的线程也可以通过调用stop方法使其进入消亡状态。 2.3 不可运行(not runnable)状态 不可运行状态都是由可运行状态转变来的。一个处于可运行状态的线程,如果遇到挂起(suspend)操作、睡眠(sleep)操作或者等待(wait)操作,就会进入不可运行状态。 另外,如果一个线程是和I/O操作有关的,那么,在执行I/O指令时,由于外设速度远远低于处理器速度而使线程受到阻, 从而进入不可运行状态,只有外设完成输入/输出之后,才会自动回到可运行状态。线程进入不可运行状态后,还可以再回到可运行状态,通常有三种途径使其恢复到可运行状态。 一是自动恢复。通过睡眠(sleep)操作进入不可运行状态的线程会在过了指定睡眠时间以后自动恢复到可运行状态,由于I/O阻塞而进入不可运行状态的线程在外设完成I/O操作后,自动恢复到可运行状态。 二是用恢复(resume)方法使其恢复。如果一个线程由于挂起(suspend)操作而从可运行状态进入不可运行状态,那么,必须用恢复(resume)操作使其再恢复到可运行状态。 三是用通知(notify或notifyAll)方法使其恢复。如果一个处于可运行状态的线程由于等待(wait)操作而转入不可运行状态,那么,必须通过调用notify方法或notifyAll方法才能使其恢复到可运行状态,采用等待操作往往是由于线程需要等待某个条件变量,当获得此条件变量后,便可由notify或ontifyAll方法使线程恢复到可运行状态。 恢复到可运行状态的每一种途径都是有针对性的,不能交叉。比如,对由于阻塞而进入不可运行状态的线程采用恢复操作将是无效的。 在不可运行状态,也可由终止(stop)操作使其进入消亡状态。 2.4 消亡(dead)状态 一个线程可以由其他任何一个状态通过终止(stop)操作而进入消亡状态。 线程一旦进入消亡状态,那它就不再存在了,所以也不可能再转到其它状态。 通常,在一个应用程序运行时,如果通过其它外部命令终止当前应用程序,那么就会调用(stop)方法终止线程。但是,最正常、最常见的途径是由于线程在可运行状态正常完成自身的任务而″寿终正寝″,从而进入消亡状态,这个完成任务的动作是由run方法实现的。 3 Java线程的两种创建途径 一种途径是通过对Thread的继承来派生一个子类,再由此子类生成一个对象来实现线程的创建,这是比较简单直接的办法。Thread类包含在系统API提供的8个软件包之一Java.lang中,Thread类中包含了很多与线程有关的方, 其中,一个名为run的方法就是用来实现线程行为的。比如:� 1 import java.lang.*� //引用lang包 2 class Mango exteds Thread { 3 public void run() { 4 ...... 5 �} 6 �} 上述程序段中,第1行语句引用软件包lang,这样做是为了给编译器一个信息,从而使后面程序中有关lang包中的方法可直接用方法名,而不必带前缀“Java.lang”。第2行语句是从lang包Thread派生一个子类Mango, 而这个子类中提供了run方法的实现,这样,运行时,将由子类Mango 的 run方法置换父类Thread的run方法。 不过这一步还没有创建线, 必须由子类生成一个对象,并且进行启动操作,这样才能得到一个处于可运行状态的线程。生成对象其实就是完成线程的创建,而启动是对已创建的线程进行操作。具体语句如下:� Mango t=new Mango(); � t.start(); � 上面先用关键字new使线程进入创建状态,又调用start()方法使线程进入可运行状态。注意,start()方法是由Thread继承给子类Mango、然后又在生成对象时由对象t从类Mango得到的。 另一种途径是通过一个类去继承接口runnable来实现线程的创建� 而这个类必须提供runnable接口中定义的方法run()的实现。runnable是Java.lang包中的一个接口,在runnable接口中,只定义了一个抽象方法run()。所以,如用这种途径来创建线程,则应先由一个类连接接口runnable,并且提供run()方法的实现。比如,下面的程序段实现了与接口的连接。 1 public class xyz implements Runnable{ 2 int i; � 3 public voed run(){ 4 while (true){ � 5 System.out.println("Hello"+i++); 6 � } 7 � } 8 � } 然后再创建一个线程� runnable r=new xyz(); � Thread t=new Thread(r); 这种途径创建线程比第一种途径灵活。当一个类既需要继承一个父类又要由此创建一个线程时,由于Java不支持多重继承,这样,用第一种途径将行不通,因为,按此思路创建线程也是以继承的方法实现的。 于是,就需要一个类既继承Thread类,又继承另一个父类。但用接口方法却能实现这个目标。 4 线程的启动和终止 Thread的start()方法对应于启动操作,它完成两方面的功能:一方面是为线程分配必要的资源,使线程处于可运行状态,另一方面是调用线程的run()方法置换Thread的中run()方法或者置换runnable中的run()方法来运行线程。 使用start()方法的语句很简单,即: ThreadName.start(); 下面的程序段先创建并启动线程myThread, 然后使用sleep()方法让其睡眠20000ms即20s,使其处于不可运行状态,过20s后,线程又自动恢复到可运行状态。 Thread MyThread=new MyThreadClass(); MyThread.start();� � try{ � MyThread.sleep(20000); �} catch(InterrujptedException e){ }
如何使用jstack分析线程状态
jstack 线程状态
jstack 线程里,值得关注的线程状态有:
死锁,Deadlock(重点关注)
执行中,Runnable
等待资源,Waiting
on condition(重点关注)
等待获取监视器,Waiting
on monitor entry(重点关注)
暂停,Suspended
对象等待中,Object.wait()
或 TIMED_WAITING
阻塞,Blocked(重点关注)
停止,Parked
下面我们先从第一个例子开始分析,然后再列出不同线程状态的含义以及注意事项,最后再补充两个实例。
综合示范一:Waiting
to lock 和 Blocked
实例如下:
"RMI TCP Connection(267865)-172.16.5.25" daemon prio=10 tid=0x00007fd508371000 nid=0x55ae waiting
for monitor entry [0x00007fd4f8684000]
java.lang.Thread.State: BLOCKED
(on object monitor)
at org.apache.log4j.Category.callAppenders(Category.java:201)
- waiting
to lock <0x00000000acf4d0c0 (a org.apache.log4j.Logger)
at org.apache.log4j.Category.forcedLog(Category.java:388)
at org.apache.log4j.Category.log(Category.java:853)
at org.apache.commons.logging.impl.Log4JLogger.warn(Log4JLogger.java:234)
at com.tuan.core.common.lang.cache.remote.SpyMemcachedClient.get(SpyMemcachedClient.java:110)
……
1)线程状态是 Blocked,阻塞状态。说明线程等待资源超时!
2)“ waiting to lock <0x00000000acf4d0c0”指,线程在等待给这个 0x00000000acf4d0c0 地址上锁(英文可描述为:trying
to obtain 0x00000000acf4d0c0 lock)。
3)在 dump 日志里查找字符串 0x00000000acf4d0c0,发现有大量线程都在等待给这个地址上锁。如果能在日志里找到谁获得了这个锁(如locked < 0x00000000acf4d0c0 ),就可以顺藤摸瓜了。
4)“waiting for monitor entry”说明此线程通过 synchronized(obj) {……} 申请进入了临界区,从而进入了下图1中的“Entry
Set”队列,但该 obj 对应的 monitor 被其他线程拥有,所以本线程在 Entry Set 队列中等待。
5)第一行里,"RMI TCP Connection(267865)-172.16.5.25"是 Thread Name 。tid指Java Thread id。nid指native线程的id。prio是线程优先级。[0x00007fd4f8684000]是线程栈起始地址。
Dump文件中的线程状态含义及注意事项
含义如下所示:
Deadlock:死锁线程,一般指多个线程调用间,进入相互资源占用,导致一直等待无法释放的情况。
Runnable:一般指该线程正在执行状态中,该线程占用了资源,正在处理某个请求,有可能正在传递SQL到数据库执行,有可能在对某个文件操作,有可能进行数据类型等转换。
Waiting on condition:等待资源,或等待某个条件的发生。具体原因需结合
stacktrace来分析。
一种情况是网络非常忙,几乎消耗了所有的带宽,仍然有大量数据等待网络读写;
另一种情况也可能是网络空闲,但由于路由等问题,导致包无法正常的到达。
如果堆栈信息明确是应用代码,则证明该线程正在等待资源。一般是大量读取某资源,且该资源采用了资源锁的情况下,线程进入等待状态,等待资源的读取。
又或者,正在等待其他线程的执行等。
如果发现有大量的线程都在处在 Wait on condition,从线程 stack看,正等待网络读写,这可能是一个网络瓶颈的征兆。因为网络阻塞导致线程无法执行。
另外一种出现 Wait on condition的常见情况是该线程在 sleep,等待 sleep的时间到了时候,将被唤醒。
Blocked:线程阻塞,是指当前线程执行过程中,所需要的资源长时间等待却一直未能获取到,被容器的线程管理器标识为阻塞状态,可以理解为等待资源超时的线程。
Waiting for monitor entry 和 in Object.wait():Monitor是
Java中用以实现线程之间的互斥与协作的主要手段,它可以看成是对象或者 Class的锁。每一个对象都有,也仅有一个
monitor。从下图1中可以看出,每个 Monitor在某个时刻,只能被一个线程拥有,该线程就是 “Active
Thread”,而其它线程都是 “Waiting Thread”,分别在两个队列 “ Entry Set”和 “Wait Set”里面等候。在
“Entry Set”中等待的线程状态是 “Waiting for monitor entry”,而在 “Wait Set”中等待的线程状态是
“in Object.wait()”。
图1 A Java Monitor
综合示范二:Waiting
on condition 和 TIMED_WAITING
实例如下:
"RMI TCP Connection(idle)" daemon prio=10 tid=0x00007fd50834e800 nid=0x56b2 waiting
on condition [0x00007fd4f1a59000]
java.lang.Thread.State: TIMED_WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x00000000acd84de8 (a
java.util.concurrent.SynchronousQueue$TransferStack)
at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:198)
at java.util.concurrent.SynchronousQueue$TransferStack.awaitFulfill(SynchronousQueue.java:424)
at java.util.concurrent.SynchronousQueue$TransferStack.transfer(SynchronousQueue.java:323)
at java.util.concurrent.SynchronousQueue.poll(SynchronousQueue.java:874)
at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:945)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:907)
at java.lang.Thread.run(Thread.java:662)
1)“TIMED_WAITING (parking)”中的 timed_waiting 指等待状态,但这里指定了时间,到达指定的时间后自动退出等待状态;parking指线程处于挂起中。
2)“waiting on condition”需要与堆栈中的“parking to wait for <0x00000000acd84de8 (a
java.util.concurrent.SynchronousQueue$TransferStack)”结合来看。首先,本线程肯定是在等待某个条件的发生,来把自己唤醒。其次,SynchronousQueue
并不是一个队列,只是线程之间移交信息的机制,当我们把一个元素放入到 SynchronousQueue
中时必须有另一个线程正在等待接受移交的任务,因此这就是本线程在等待的条件。
3)别的就看不出来了。
综合示范三:in
Obejct.wait() 和 TIMED_WAITING
实例如下:
"RMI RenewClean-[172.16.5.19:28475]"
daemon prio=10 tid=0x0000000041428800 nid=0xb09 in Object.wait() [0x00007f34f4bd0000]
java.lang.Thread.State: TIMED_WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x00000000aa672478 (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:118)
- locked <0x00000000aa672478 (a java.lang.ref.ReferenceQueue$Lock)
at sun.rmi.transport.DGCClient$EndpointEntry$RenewCleanThread.run(DGCClient.java:516)
at java.lang.Thread.run(Thread.java:662)
1)“TIMED_WAITING (on object monitor)”,对于本例而言,是因为本线程调用了 java.lang.Object.wait(long timeout) 而进入等待状态。
2)“Wait Set”中等待的线程状态就是“ in Object.wait() ”。当线程获得了
Monitor,进入了临界区之后,如果发现线程继续运行的条件没有满足,它则调用对象(一般就是被 synchronized 的对象)的
wait() 方法,放弃了 Monitor,进入 “Wait Set”队列。只有当别的线程在该对象上调用了
notify() 或者 notifyAll() ,“ Wait Set”队列中线程才得到机会去竞争,但是只有一个线程获得对象的
Monitor,恢复到运行态。
3)RMI RenewClean 是 DGCClient 的一部分。DGC 指的是 Distributed GC,即分布式垃圾回收。
4)请注意,是先 locked <0x00000000aa672478,后 waiting on <0x00000000aa672478,之所以先锁再等同一个对象,请看下面它的代码实现:
static private class Lock { };
private Lock lock = new Lock();
public Reference<? extends T remove(long
timeout)
{
synchronized (lock) {
Reference<? extends T r = reallyPoll();
if (r != null) return r;
for (;;) {
lock.wait(timeout);
r = reallyPoll();
……
}
}
即,线程的执行中,先用 synchronized 获得了这个对象的 Monitor(对应于 locked <0x00000000aa672478 );当执行到 lock.wait(timeout);,线程就放弃了 Monitor 的所有权,进入“Wait Set”队列(对应于 waiting
on <0x00000000aa672478 )。
5)从堆栈信息看,是正在清理 remote references to remote objects ,引用的租约到了,分布式垃圾回收在逐一清理呢。
关于java的线程状态转换图和进程的基本状态转换图的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
java的线程状态转换图的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于进程的基本状态转换图、java的线程状态转换图的信息别忘了在本站进行查找喔。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
暂时没有评论,来抢沙发吧~