Java如何自定义异常打印非堆栈信息详解

网友投稿 378 2023-02-08


Java如何自定义异常打印非堆栈信息详解

前言

在学习java的过程中,想必大家都一定学习过异常这个篇章,异常的基本特性和使用这里就不再多讲了。什么是异常?我不知道大家都是怎么去理解的,我的理解很简单,那就是不正常的情况,比如我现在是个男的,但是我却有着女人所独有的东西,在我看来这尼玛肯定是种异常,简直不能忍。想必大家都能够理解看懂,并正确使用。

但是,光学会基本异常处理和使用不够的,在工作中出现异常并不可怕,有时候是需要使用异常来驱动业务的处理,例如: 在使用唯一约束的数据库的时候,如果插入一条重复的数据,那么可以通过捕获唯一约束异常DuplicateKeyException来进行处理,这个时候,在server层中就可以向调用层抛出对应的状态,上层根据对应的状态再进行处理,所以有时候异常对业务来说,是一个驱动方式。

有的捕获异常之后会将异常进行输出,不知道细心的同学有没有注意到一点,输出的异常是什么东西呢?

下面来看一个常见的异常:

java.lang.ArithmeticException: / by zero

at greenhouse.ExceptionTest.testException(ExceptionTest.java:16)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:597)

at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:44)

at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:15)

at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:41)

at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:20)

at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:76)

at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)

at org.junit.runners.ParentRunner$3.run(ParentRunner.java:193)

at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:52)

at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:191)

at org.junit.runners.ParentRunner.access$000(ParentRunner.java:42)

at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:184)

at org.junit.runners.ParentRunner.run(ParentRunner.java:236)

at org.junit.runner.JUnitCore.run(JUnitCore.java:157)

at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:68)

at com.intellij.rt.execution.junit.IdeaTestRunner$Repeater.startRunnerWithArgs(IdeaTestRunner.java:47)

at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:242)

at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:70)

一个空指针异常:

java.lang.NullPointerException

at greenhouse.ExceptionTest.testException(ExceptionTest.java:16)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:597)

at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:44)

at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:15)

at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:41)

at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:20)

at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:76)

at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)

at org.junit.runners.ParentRunner$3.run(ParentRunner.java:193)

at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:52)

at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:191)

at org.junit.runners.ParentRunner.access$000(ParentRunner.java:42)

at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:184)

at org.junit.runners.ParentRunner.run(ParentRunner.java:236)

at org.junit.runner.JUnitCore.run(JUnitCore.java:157)

at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:68)

at com.intellij.rt.execution.junit.IdeaTestRunner$Repeater.startRunnerWithArgs(IdeaTestRunner.java:47)

at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:242)

at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:70)

大家有没有发现一个特点,就是异常的输出是中能够精确的输出异常出现的地点,还有后面一大堆的执行过程类调用,也都打印出来了,这些信息从哪儿来呢? 这些信息是从栈中获取的,在打印异常日志的时候,会从栈中去获取这些调用信息。能够精确的定位异常出现的异常当然是好,但是我们有时候考虑到程序的性能,以及一些需求时,我们有时候并不需要完全的打印这些信息,并且去方法调用栈中获取相应的信息,是有性能消耗的,对于一些性能要求高的程序,我们完全可以在这一个方面为程序性能做一个提升。

所以如何避免输出这些堆栈信息呢? 那么自定义异常就可以解决这个问题:

首先,自动异常需要继承RuntimeException, 然后,再通过是重写fillInStackTrace, toString 方法, 例如,下面我定义一个AppException异常:

package com.green.monitor.common.exception;

import java.text.MessageFormat;

/**

* 自定义异常类

*/

public class AppException extends RuntimeException {

private boolean isSuccess = false;

private String key;

private String info;

public AppException(String key) {

super(key);

this.key = key;

this.info = key;

}

public AppException(String key, String message) {

super(MessageFormat.format("{0}[{1}]", key, message));

this.key = key;

this.info = message;

}

public AppException(String message, String key, String info) {

super(message);

this.key = key;

this.info = info;

}

public boolean isSuccess() {

return isSuccess;

}

public String getKey() {

return key;

}

public void setKey(String key) {

this.key = key;

}

public String getInfo() {

return info;

}

public void setInfo(String info) {

this.info = info;

}

@Override

public Throwable fillInStackTrace() {

return this;

}

@Override

public String toString() {

return MessageFormat.format("{0}[{1}]",this.key,this.info);

}

}

那么为什么要重写fillInStackTrace, 和 toString 方法呢? 我们首先来看源码是怎么一回事.

public class RuntimeException extends Exception {

static final long serialVersionUID = -7034897190745766939L;

/** Constructs a new runtime exception with null as its

* detail message.cHzpuq The cause is not initialized, and may subsequently be

* initialized by a call to {@link #initCause}.

*/

public RuntimeException() {

super();

}

/** Constructs a new runtime exception with the specified detail message.

* The cause is not initialized, and may subsequently be initialized by a

* call to {@link #initCause}.

*

* @param message the detail message. The detail message is saved for

* later retrieval by the {@link #getMessage()} method.

*/

public RuntimeException(String message) {

super(message);

}

/**

* Constructs a new runtime excHzpuqception with the specified detail message and

* cause.

Note that the detail message associated with

* cause is not automatically incorporated in

* this runtime exception's detail message.

*

* @param message the detail message (which is saved for later retrieval

* by the {@link #getMessage()} method).

* @param cause the cause (which is saved for later retrieval by the

* {@link #getCause()} method). (A null value is

* permitted, and indicates that the cause is nonexistent or

* unknown.)

* @since 1.4

*/

public RuntimeException(String message, Throwable cause) {

super(message, cause);

}

/** Constructs a new runtime exception with the specified cause and a

* detail message of (cause==null ? null : cause.toString())

* (which typically contains the class and detail message of

* cause). This constructor is useful for runtime exceptions

* that are little more than wrappers for other throwables.

*

* @param cause the cause (which is saved for later retrieval by the

* {@link #getCause()} method). (A null value is

* permitted, and indicates that the cause is nonexistent or

* unknown.)

* @since 1.4

*/

public RuntimeException(Throwable cause) {

super(cause);

}

}

RuntimeException是继承Exception,但是它里面去只是调用了父类的方法,本身是没有做什么其余的操作。那么继续看Exception里面是怎么回事呢?

public class Exception extends Throwable {

static final long serialVersionUID = -3387516993124229948L;

/**

* Constructs a new exception with null as its detail message.

* The cause is not initialized, and may subsequently be initialized by a

* call to {@link #initCause}.

*/

public Exception() {

super();

}

/**

* Constructs a new exception with the specified detail message. The

* cause is not initialized, and may subsequently be initialized by

* a call to {@link #initCause}.

*

* @param message the detail message. The detail message is saved for

* later retrieval by the {@link #getMessage()} method.

*/

public Exception(String message) {

super(message);

}

/**

* Constructs a new exception with the specified detail message and

* cause.

Note that the detail message associated with

* cause is not automatically incorporated in

* this exception's detail message.

*

* @param message the detail message (which is saved for later retrieval

* by the {@link #getMessage()} method).

* @param cause the cause (which is saved for later retrieval by the

* {@link #getCause()} method). (A null value is

* permitted, and indicates that the cause is nonexistent or

* unknown.)

* @since 1.4

*/

public Exception(String message, Throwable cause) {

super(message, cause);

}

/**

* Constructs a new exception with the specified cause and a detail

* message of (cause==null ? null : cause.toString()) (which

* typically contains the class and detail message of cause).

* This constructor is useful for exceptions that are little more than

* wrappers for other throwables (for example, {@link

* java.security.PrivilegedActionException}).

*

* @param cause the cause (which is saved for later retrieval by the

* {@link #getCause()} method). (A null value is

* permitted, and indicates that the cause is nonexistent or

* unknown.)

* @since 1.4

*/

public Exception(Throwable cause) {

super(cause);

}

}

从源码中可以看到, Exception里面也是直接调用了父类的方法,和RuntimeException一样,自己其实并没有做什么。 那么直接来看Throwable里面是怎么一回事:

public class Throwable implements Serializable {

public Throwable(String message) {

fillInStackTrace();

detailMessage = message;

}

/**

* Fills in the execution stack trace. This method records within this

* Throwable object information about the current state of

* the stack frames for the current thread.

*

* @return a reference to this Throwable instance.

* @see java.lang.Throwable#printStackTrace()

*/

public synchronized native Throwable fillInStackTrace();

/**

* Provides programmatic access to the stack trace information printed by

* {@link #printStackTrace()}. Returns an array of stack trace elements,

* each representing one stack frame. The zeroth element of the array

* (assuming the array's length is non-zero) represents the top of the

* stack, which is the last method invocation in the sequence. Typically,

* this is the point at which this throwable was created and thrown.

* The last element of the array (assuming the array's length is non-zero)

* represents the bottom of the stack, which is the first method invocation

* in the sequence.

*

*

Some virtual machines may, under some circumstances, omit one

* or more stack frames from the stack trace. In the extreme case,

* a virtual machine that has no stack trace information concerning

* this throwable is permitted to return a zero-length array from this

* method. Generally speaking, the array returned by this method will

* contain one element for every frame that would be printed by

* printStackTrace.

*

* @return an array of stack trace elements representing the stack trace

* pertaining to this throwable.

* @since 1.4

*/

public StackTraceElement[] getStackTrace() {

return (StackTraceElement[]) getOurStackTrace().clone();

}

private synchronized StackTraceElement[] getOurStackTrace() {

// Initialize stack trace if this is the first call to this method

if (stackTrace == null) {

int depth = getStackTraceDepth();

stackTrace = new StackTraceElement[depth];

for (int i=0; i < depth; i++)

stackTrace[i] = getStackTraceElement(i);

}

return stackTrace;

}

/**

* Returns the number of elements in the stack trace (or 0 if the stack

* trace is unavailable).

*

* package-protection for use by SharedSecrets.

*/

native int getStackTraceDepth();

/**

* Returns the specified element of the stack trace.

*

* package-protection for use by SharedSecrets.

*

* @param index index of the element to return.

* @throws IndexOutOfBoundsException if index < 0 ||

* index >= getStackTraceDepth()

*/

native StackTraceElement getStackTraceElement(int index);

/**

* Returns a short description of this throwable.

* The result is the concatenation of:

*

*

*

*

* method

*

* If getLocalizedMessage returns null, then just

* the class name is returned.

*

* @return a string representation of this throwable.

*/

public String toString() {

String s = getClass().getName();

String message = getLocalizedMessage();

return (message != null) ? (s + ": " + message) : s;

}

从源码中可以看到,到Throwable就几乎到头了, 在fillInStackTrace() 方法是一个native方法,这方法也就是会调用底层的C语言,返回一个Throwable对象, toString 方法,返回的是throwable的简短描述信息, 并且在getStackTrace 方法和 getOurStackTrace 中调用的都是native方法getStackTraceElement, 而这个方法是返回指定的栈元素信息,所以这个过程肯定是消耗性能的,那么我们自定义异常中的重写toString方法和fillInStackTrace方法就可以不从栈中去获取异常信息,直接输出,这样对系统和程序来说,相对就没有那么”重”, 是一个优化性能的非常好的办法。那么如果出现自定义异常那么是什么样的呢?请看下面吧:

@Test

public void testException(){

try {

String str =null;

System.out.println(str.charAt(0));

}catch (Exception e){

throw new AppException("000001","空指针异常");

}

}

那么在异常异常的时候,系统将会打印我们自定义的异常信息:

000001[空指针异常]

Process finished with exit code -1

所以特别简洁,优化了系统程序性能,让程序不这么“重”, 所以对于性能要求特别要求的系统。赶紧自己的自定义异常吧!

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:数据接口api管理(数据库api接口)
下一篇:查看连接共享文件夹的用户(查看连接共享文件夹的用户名密码)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~