管理平台接口文档,优化业务流程的灵魂之匙
903
2023-02-13
本文目录一览:
作为一个前后端分离模式开发的团队,我们经常会看到这样的场景:前端开发和后端开发在一起热烈的讨论“你这接口参数怎么又变了?”,“接口怎么又不通了?”,“稍等,我调试下”,“你再试试..."。
那能不能写好接口文档,大家都按文档来开发?很难,因为写文档、维护文档比较麻烦,而且费时,还会经常出现 API 更新了,但文档还是旧的,各种同步不一致的情况,从而耽搁彼此的时间。
之前我们团队也遇到了同样的问题,那么作为研发团队的负责人,我是如何带领团队解决这个问题的呢?
方法其实很简单,如果能做到让写文档/维护文档这件事情的短期收益就能远高于付出的成本,那么所有问题都能迎刃而解,开发人员就会非常乐意去写接口文档。
要做到写文档和及时维护文档的短期收益就能远高于付出的成本,无非两个方向:
鉴于此,我们设想如果有一款工具做到以下这些是不是就非常爽了?
总结下来,我们需要的就是这么一款工具:
为此,我们几乎尝遍了市面上所有相关的工具,但是很遗憾,没有找到合适的。
于是,我们自己实现了一个Postman + Swagger + RAP + JMeter
这个工具就是 Apifox,经常很长一段时间不断更新迭代后,我们基本上完全实现了最初的设想,几乎完美解决了最开始遇到的所有问题,在公司内部大受欢迎。并且也形成了我们自己的最佳实践。
没错,现在我们已经将Apifox产品化对外服务了,你们团队也可以直接使用Apifox了。
官网:www.apifox.cn
Apifox = Postman + Swagger + Mock + JMeter
Apifox 是 API 文档、API 调试、API Mock、API 自动化测试一体化协作平台。
通过一套系统、一份数据,解决多个系统之间的数据同步问题。只要定义好接口文档,接口调试、数据 Mock、接口测试就可以直接使用,无需再次定义;接口文档和接口开发调试使用同一个工具,接口调试完成后即可保证和接口文档定义完全一致。高效、及时、准确!
节省研发团队的每一分钟!
如果你认为 Apifox 只做了数据打通,来提升研发团队的效率,那就错了。Apifox 还做了非常多的创新,来提升开发人员的效率。
通常一个接口会有多种情况用例,比如 正确用例 参数错误用例 数据为空用例 不同数据状态用例。定义接口的时候定义好这些不同状态的用例,接口调试的时候直接运行,非常高效。
可以独立定义数据模型,接口定义时可以直接引用数据模型,数据模型之间也可以相互引用。同样的数据结构,只需要定义一次即可多处使用;修改的时候只需要修改一处,多处实时更新,避免不一致。
使用 Apifox 调试接口的时候,系统会根据接口文档里的定义,自动校验返回的数据结构是否正确,无需通过肉眼识别,也无需手动写断言脚本检测,非常高效!
Apifox 自动校验数据结构
设置断言:
Apifox 设置断言
运行后,查看断言结果:
先放一张图对比下 Apifox 和其他同类工具 零配置 mock 出来的数据效果:
Apifox Mock 数据结果对比同类工具
可以看出 Apifox 零配置 Mock 出来的数据和真实情况是非常接近的,前端开发可以直接使用,而无需再手动写 mock 规则。
「Apifox 如何做到高效率、零配置生成非常人性化的 mock 数据」
Apifox 项目可“在线分享” API 文档,分享出去的 API 文档可设置为公开或需要密码访问,非常方便与外部团队协作。
体验地址:https://www.apipark.cn/s/ce387612-cfdb-478a-b604-b96d1dbc511b/http/5041285
根据接口模型定义,自动生成各种语言/框架(如 TypeScript、Java、Go、Swift、ObjectiveC、Kotlin、Dart、C++、C#、Rust 等)的业务代码(如 Model、Controller、单元测试代码等)和接口请求代码。目前 Apifox 支持 130 种语言及框架的代码自动生成。
更重要的是:你可以通过自定义代码模板来生成符合自己团队的架构规范的代码,满足各种个性化的需求。
接口调试
Apifox 多种主题色可选
Micro的api就是api网关
API参考了 API网关模式 为服务提供了一个单一的公共入口。基于服务发现,使得micro api可以提供具备http及动态路由的服务。
Micro的API基于HTTP协议。请求的API接口通过HTTP协议访问,并且路由是基于服务发现机制向下转发的。 Micro API在 go-micro 之上开发,所以它集成了服务发现、负载均衡、编码及基于RPC的通信。
因为micro api内部使用了go-micro,所以它自身也是可插拔的。 参考 go-plugins 了解对gRPC、kubernetes、etcd、nats、及rabbitmq等支持。另外,api也使用了 go-api ,这样,接口handler也是可以配置的。
ACME( Automatic Certificate Management Environment)是由 Let’s Encrypt 制定的安全协议。
可以选择是否配置白名单
API服务支持TLS证书
API使用带分隔符的命名空间来在逻辑上区分后台服务及公开的服务。命名空间及http请求路径会用于解析服务名与方法,比如 GET /foo HTTP/1.1 会被路由到 go.micro.api.foo 服务上。
API默认的命名空间是 go.micro.api ,当然,也可以修改:
我们演示一个3层的服务架构:
完整示例可以参考: examples/greeter
先决条件:我们使用Consul作为默认的服务发现,所以请先确定它已经安装好了,并且已经运行,比如执行 consul agent -dev 这样子方式运行。
向micro api发起http请求
HTTP请求的路径 /greeter/say/hello 会被路由到服务 go.micro.api.greeter 的方法 Say.Hello 上。
绕开api服务并且直接通过rpc调用:
使用JSON的方式执行同一请求:
micro api提供下面类型的http api接口
请看下面的例子
Handler负责持有并管理HTTP请求路由。
默认的handler使用从注册中心获取的端口元数据来决定指向服务的路由,如果路由不匹配,就会回退到使用”rpc” hander。在注册时,可以通过 go-api 来配置路由。
API有如下方法可以配置请求handler:
通过 /rpc 入口可以绕开handler处理器。
API处理器接收任何的HTTP请求,并且向前转发指定格式的RPC请求。
RPC处理器接收json或protobuf格式的HTTP POST请求,然后向前转成RPC请求。
代理Handler其实是内置在服务发现中的反向代理服务。
事件处理器使用go-micro的broker代理接收http请求并把请求作为消息传到消息总线上。
Web处理器是,它是内置在服务发现中的HTTP反向代理服务,支持web socket。
/rpc 端点允许绕过主handler,然后与任何服务直接会话。
示例:
更多信息查看可运行的示例: github.com/micro/examples/api
解析器,Micro使用命名空间与HTTP请求路径来动态路由到具体的服务。
API命名的空间是 go.micro.api 。可以通过指令 --namespace 或者环境变量 MICRO_NAMESPACE= 设置命名空间。
下面说一下解析器是如何使用的:
RPC解析器示例中的RPC服务有名称与方法,分别是 go.micro.api.greeter , Greeter.Hello 。
URL会被解析成以下几部分:
带版本号的API URL也可以很容易定位到具体的服务:
代理解析器只处理服务名,所以处理方案和RPC解析器有点不太一样。
URL会被解析成以下几部分:
切换到新语言始终是一大步,尤其是当您的团队成员只有一个时有该语言的先前经验。现在,Stream 的主要编程语言从 Python 切换到了 Go。这篇文章将解释stream决定放弃 Python 并转向 Go 的一些原因。
Go 非常快。性能类似于 Java 或 C++。对于用例,Go 通常比 Python 快 40 倍。
对于许多应用程序来说,编程语言只是应用程序和数据库之间的粘合剂。语言本身的性能通常并不重要。然而,Stream 是一个API 提供商,为 700 家公司和超过 5 亿最终用户提供提要和聊天平台。多年来,我们一直在优化 Cassandra、PostgreSQL、Redis 等,但最终,您会达到所使用语言的极限。Python 是一门很棒的语言,但对于序列化/反序列化、排名和聚合等用例,它的性能相当缓慢。我们经常遇到性能问题,Cassandra 需要 1 毫秒来检索数据,而 Python 会花费接下来的 10 毫秒将其转换为对象。
看看我如何开始 Go 教程中的一小段 Go 代码。(这是一个很棒的教程,也是学习 Go 的一个很好的起点。)
如果您是 Go 新手,那么在阅读那个小代码片段时不会有太多让您感到惊讶的事情。它展示了多个赋值、数据结构、指针、格式和一个内置的 HTTP 库。当我第一次开始编程时,我一直喜欢使用 Python 更高级的功能。Python 允许您在编写代码时获得相当的创意。例如,您可以:
这些功能玩起来很有趣,但是,正如大多数程序员会同意的那样,在阅读别人的作品时,它们通常会使代码更难理解。Go 迫使你坚持基础。这使得阅读任何人的代码并立即了解发生了什么变得非常容易。 注意:当然,它实际上有多“容易”取决于您的用例。如果你想创建一个基本的 CRUD API,我仍然推荐 Django + DRF或 Rails。
作为一门语言,Go 试图让事情变得简单。它没有引入许多新概念。重点是创建一种非常快速且易于使用的简单语言。它唯一具有创新性的领域是 goroutine 和通道。(100% 正确CSP的概念始于 1977 年,所以这项创新更多是对旧思想的一种新方法。)Goroutines 是 Go 的轻量级线程方法,通道是 goroutines 之间通信的首选方式。Goroutines 的创建非常便宜,并且只需要几 KB 的额外内存。因为 Goroutine 非常轻量,所以有可能同时运行数百甚至数千个。您可以使用通道在 goroutine 之间进行通信。Go 运行时处理所有复杂性。goroutines 和基于通道的并发方法使得使用所有可用的 CPU 内核和处理并发 IO 变得非常容易——所有这些都不会使开发复杂化。与 Python/Java 相比,在 goroutine 上运行函数需要最少的样板代码。您只需在函数调用前加上关键字“go”:
Go 的并发方法很容易使用。与 Node 相比,这是一种有趣的方法,开发人员必须密切关注异步代码的处理方式。Go 中并发的另一个重要方面是竞争检测器。这样可以很容易地确定异步代码中是否存在任何竞争条件。
我们目前用 Go 编写的最大的微服务编译需要 4 秒。与以编译速度慢而闻名的 Java 和 C++ 等语言相比,Go 的快速编译时间是一项重大的生产力胜利。我喜欢在程序编译的时候摸鱼,但在我还记得代码应该做什么的同时完成事情会更好。
首先,让我们从显而易见的开始:与 C++ 和 Java 等旧语言相比,Go 开发人员的数量并不多。根据StackOverflow的数据, 38% 的开发人员知道 Java, 19.3% 的人知道 C++,只有 4.6% 的人知道 Go。GitHub 数据显示了类似的趋势:Go 比 Erlang、Scala 和 Elixir 等语言使用更广泛,但不如 Java 和 C++ 流行。幸运的是,Go 是一种非常简单易学的语言。它提供了您需要的基本功能,仅此而已。它引入的新概念是“延迟”声明和内置的并发管理与“goroutines”和通道。(对于纯粹主义者来说:Go 并不是第一种实现这些概念的语言,只是第一种使它们流行起来的语言。)任何加入团队的 Python、Elixir、C++、Scala 或 Java 开发人员都可以在一个月内在 Go 上发挥作用,因为它的简单性。与许多其他语言相比,我们发现组建 Go 开发人员团队更容易。如果您在博尔德和阿姆斯特丹等竞争激烈的生态系统中招聘人员,这是一项重要的优势。
对于我们这样规模的团队(约 20 人)来说,生态系统很重要。如果您必须重新发明每一个小功能,您根本无法为您的客户创造价值。Go 对我们使用的工具有很好的支持。实体库已经可用于 Redis、RabbitMQ、PostgreSQL、模板解析、任务调度、表达式解析和 RocksDB。与 Rust 或 Elixir 等其他较新的语言相比,Go 的生态系统是一个重大胜利。它当然不如 Java、Python 或 Node 之类的语言好,但它很可靠,而且对于许多基本需求,你会发现已经有高质量的包可用。
Gofmt 是一个很棒的命令行实用程序,内置在 Go 编译器中,用于格式化代码。就功能而言,它与 Python 的 autopep8 非常相似。我们大多数人并不真正喜欢争论制表符与空格。格式的一致性很重要,但实际的格式标准并不那么重要。Gofmt 通过使用一种正式的方式来格式化您的代码来避免所有这些讨论。
Go 对协议缓冲区和 gRPC 具有一流的支持。这两个工具非常适合构建需要通过 RPC 通信的微服务。您只需要编写一个清单,在其中定义可以进行的 RPC 调用以及它们采用的参数。然后从这个清单中自动生成服务器和客户端代码。生成的代码既快速又具有非常小的网络占用空间并且易于使用。从同一个清单中,您甚至可以为许多不同的语言生成客户端代码,例如 C++、Java、Python 和 Ruby。因此,内部流量不再有模棱两可的 REST 端点,您每次都必须编写几乎相同的客户端和服务器代码。.
Go 没有像 Rails 用于 Ruby、Django 用于 Python 或 Laravel 用于 PHP 那样的单一主导框架。这是 Go 社区内激烈争论的话题,因为许多人主张你不应该一开始就使用框架。我完全同意这对于某些用例是正确的。但是,如果有人想构建一个简单的 CRUD API,他们将更容易使用 Django/DJRF、Rails Laravel 或Phoenix。对于 Stream 的用例,我们更喜欢不使用框架。然而,对于许多希望提供简单 CRUD API 的新项目来说,缺乏主导框架将是一个严重的劣势。
Go 通过简单地从函数返回错误并期望调用代码来处理错误(或将其返回到调用堆栈)来处理错误。虽然这种方法有效,但很容易失去问题的范围,以确保您可以向用户提供有意义的错误。错误包通过允许您向错误添加上下文和堆栈跟踪来解决此问题。另一个问题是很容易忘记处理错误。像 errcheck 和 megacheck 这样的静态分析工具可以方便地避免犯这些错误。虽然这些变通办法效果很好,但感觉不太对劲。您希望该语言支持正确的错误处理。
Go 的包管理绝不是完美的。默认情况下,它无法指定特定版本的依赖项,也无法创建可重现的构建。Python、Node 和 Ruby 都有更好的包管理系统。但是,使用正确的工具,Go 的包管理工作得很好。您可以使用Dep来管理您的依赖项,以允许指定和固定版本。除此之外,我们还贡献了一个名为的开源工具VirtualGo,它可以更轻松地处理用 Go 编写的多个项目。
我们进行的一个有趣的实验是在 Python 中使用我们的排名提要功能并在 Go 中重写它。看看这个排名方法的例子:
Python 和 Go 代码都需要执行以下操作来支持这种排名方法:
开发 Python 版本的排名代码大约花了 3 天时间。这包括编写代码、单元测试和文档。接下来,我们花了大约 2 周的时间优化代码。其中一项优化是将分数表达式 (simple_gauss(time)*popularity) 转换为抽象语法树. 我们还实现了缓存逻辑,可以在未来的特定时间预先计算分数。相比之下,开发此代码的 Go 版本大约需要 4 天时间。性能不需要任何进一步的优化。因此,虽然 Python 的最初开发速度更快,但基于 Go 的版本最终需要我们团队的工作量大大减少。另外一个好处是,Go 代码的执行速度比我们高度优化的 Python 代码快大约 40 倍。现在,这只是我们通过切换到 Go 体验到的性能提升的一个示例。
与 Python 相比,我们系统的其他一些组件在 Go 中构建所需的时间要多得多。作为一个总体趋势,我们看到 开发 Go 代码需要更多的努力。但是,我们花更少的时间 优化 代码以提高性能。
我们评估的另一种语言是Elixir.。Elixir 建立在 Erlang 虚拟机之上。这是一种迷人的语言,我们之所以考虑它,是因为我们的一名团队成员在 Erlang 方面拥有丰富的经验。对于我们的用例,我们注意到 Go 的原始性能要好得多。Go 和 Elixir 都可以很好地服务数千个并发请求。但是,如果您查看单个请求的性能,Go 对于我们的用例来说要快得多。我们选择 Go 而不是 Elixir 的另一个原因是生态系统。对于我们需要的组件,Go 有更成熟的库,而在许多情况下,Elixir 库还没有准备好用于生产环境。培训/寻找开发人员使用 Elixir 也更加困难。这些原因使天平向 Go 倾斜。Elixir 的 Phoenix 框架看起来很棒,绝对值得一看。
Go 是一种非常高性能的语言,对并发有很好的支持。它几乎与 C++ 和 Java 等语言一样快。虽然与 Python 或 Ruby 相比,使用 Go 构建东西确实需要更多时间,但您将节省大量用于优化代码的时间。我们在Stream有一个小型开发团队,为超过 5 亿最终用户提供动力和聊天。Go 结合了 强大的生态系统 、新开发人员的 轻松入门、快速的性能 、对并发的 可靠支持和高效的编程环境 ,使其成为一个不错的选择。Stream 仍然在我们的仪表板、站点和机器学习中利用 Python 来提供个性化的订阅源. 我们不会很快与 Python 说再见,但今后所有性能密集型代码都将使用 Go 编写。我们新的聊天 API也完全用 Go 编写。
关于go api接口管理系统和go开发api接口的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 go api接口管理系统的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于go开发api接口、go api接口管理系统的信息别忘了在本站进行查找喔。版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~