微服务api管理平台(微服务入口)

网友投稿 355 2023-03-07


本篇文章给大家谈谈微服务api管理平台,以及微服务入口对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享微服务api管理平台的知识,其中也会对微服务入口进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

红河java培训学校告诉你微服务架构开发的工具都有哪些?

关于微服务架构的文章相信大家应该看过不少了,其中关于微服务的架构技巧以及开发工具的介绍也有很多。今天,红河电脑培训http://www.kmbdqn.cn/就给大家汇总了一下,其中适合微服务架构的工具都有哪些种类,一起来了解一下吧。





API管理和测试


1.APIFortress


APIFortress是API测试和健康检测工具,为企业级API提供自动化的功能测试、健康检测和负载测试。它的设计原则是无代码,完全基于现代API架构实践和模式而构建。


2.Postman


Postman是面向个体开发者和团队的API开发套件,可让你轻松运行UI驱动的API测试。Postman还是一个功能强大的HTTP客户端,让RESTfulAPI探索变得轻而易举。用户可以将简单和复杂的HTTP请求组合在一起,实现快速的API测试、开发和文档化。


3.Tyk


Tyk是一款开箱即用的开源API管理平台,速度快,可伸缩。无论是部署在内部,还是部署在云端,或者使用两者的混合,对Tyk来说都不在话下。除了可以降低管理成本,Tyk还将为你带来高可用性和低延迟。


消息服务


4.RabbitMQ


RabbitMQ可作为微服务之间的通信桥梁,它支持各种模式,可提高应用程序的可伸缩性,并解决大多数分布式系统都存在的问题。RabbitMQ可用在微服务环境或任何其他分布式系统中。你还可以使用这个工具在服务之间交换事件。


5.亚马逊简单队列服务(SQS)


亚马逊SQS提供了强大、灵活且可靠的微服务通信机制。作为一种基于发布订阅的微服务通信模型,亚马逊SQS可以帮助开发人员解决很多问题。除了更好的安全性之外,队列还通过为待处理消息提供储存来增强可靠性。


6.ApacheKafka


消息队列对于微服务架构来说是非常重要的,可用来处理微服务之间的通信以及微服务与外部源之间的通信,不管是密集型的数据处理还是API调用。ApacheKafka是一个具有高容错和弹性的分布式流处理平台。


微服务编排平台,轻量级ESB

RestCloud基于iPaaS全线产品快速构建业务集成及数据中台;业务系统集成顾问及API落地实践经验,协助企业梳理业务系统集成关系、规划API资产。

RestCloud全产品线包含:API开发、ESB编排、ETL数据融合、系统链接器、自动化测试、智能识别、监控中心等核心功能。
iPaaS混合集成平台

随着全面上云时代的到来,企业不可避免地需要跨越多个独立但相互依赖的应用程序或合作伙伴,而传统基于SOA架构的单独ESB平台已完全无法满足这种混合集成的需求,而通过RestCloud系例API产品线可以协助企业快速集成跨越多个云端、私有端、物联网的混合集成平台。
企业服务总线(ESB)

RestCloud ESB平台由API网关和ESB服务编排平台组成,API网关负责API的路由和透传,ESB总线平台则负责以API为中心链接各个业务系统进行数据的推送、拉取、事务控制、异常数据告警等能力。
通过RestCloud系列产品线可以协助企业轻松构建基于微服务架构的新一代企业服务总线(ESB),传统基于SOA架构的ESB产品主要解决的数据融合和协议转换等基础功能,已不能满足基于微服务架构、混合云集成架构、跨组织、跨单位的总线解决方案。

而RestCloud的每个产品线都是新一代的按照新的互联网架构模式进行研发的产品线,能快速协助企业从传统的SOA架构转向微服务架构的ESB服务总线解决方案。
API生命周期管理平台

RestCloud通过API网关、API管理门户、API监控平台等产品能为企业提供全方位的API生命周期管理平台解决方案,从API的开发、测试、发布、监控、下线等进行全方位的治理,并协助客户建立API开发规范、API接入指南等管理体系。

「微服务架构」部署NGINX Plus作为API网关,第1部分 - NGINX

了解着名的Nginx服务器(微服务必不可少的东西)如何用作API网关。

现代应用程序体系结构的核心是HTTP API。 HTTP使应用程序能够快速构建并轻松维护。无论应用程序的规模如何,HTTP API都提供了一个通用接口,从单用途微服务到无所不包的整体。通过使用HTTP,支持超大规模Internet属性的Web应用程序交付的进步也可用于提供可靠和高性能的API交付。

有关API网关对微服务应用程序重要性的精彩介绍,请参阅我们博客上的构建微服务:使用API​​网关。

作为领先的高性能,轻量级反向代理和负载均衡器,NGINX Plus具有处理API流量所需的高级HTTP处理功能。这使得NGINX Plus成为构建API网关的理想平台。在这篇博文中,我们描述了许多常见的API网关用例,并展示了如何配置NGINX Plus以便以高效,可扩展且易于维护的方式处理它们。我们描述了一个完整的配置,它可以构成生产部署的基础。

注意:除非另有说明,否则本文中的所有信息均适用于NGINX Plus和NGINX开源。

API网关的主要功能是为多个API提供单一,一致的入口点,无论它们在后端如何实现或部署。并非所有API都是微服务应用程序。我们的API网关需要管理现有的API,单块和正在部分过渡到微服务的应用程序。

在这篇博文中,我们引用了一个假设的库存管理API,即“仓库API”。我们使用示例配置代码来说明不同的用例。 Warehouse API是一个RESTful API,它使用JSON请求并生成JSON响应。但是,当部署为API网关时,使用JSON不是NGINX Plus的限制或要求; NGINX Plus与API本身使用的架构风格和数据格式无关。

Warehouse API实现为离散微服务的集合,并作为单个API发布。库存和定价资源作为单独的服务实施,并部署到不同的后端。所以API的路径结构是:

例如,要查询当前仓库库存,客户端应用程序会向/ api / warehouse / inventory发出HTTP GET请求。
使用NGINX Plus作为API网关的一个优点是,它可以执行该角色,同时充当现有HTTP流量的反向代理,负载平衡器和Web服务器。如果NGINX Plus已经是应用程序交付堆栈的一部分,那么通常不需要部署单独的API网关。但是,API网关所期望的某些默认行为与基于浏览器的流量的预期不同。出于这个原因,我们将API网关配置与基于浏览器的流量的任何现有(或未来)配置分开。

为实现这种分离,我们创建了一个支持多用途NGINX Plus实例的配置布局,并为通过CI / CD管道自动配置部署提供了便利的结构。 / etc / nginx下的结果目录结构如下所示。

所有API网关配置的目录和文件名都以api_为前缀。这些文件和目录中的每一个都启用API网关的不同特性和功能,并在下面详细说明。

所有NGINX配置都以主配置文件nginx.conf开头。要读入API网关配置,我们在nginx.conf的http块中添加一个指令,该指令引用包含网关配置的文件api_gateway.conf(下面的第28行)。请注意,默认的nginx.conf文件使用include伪指令从conf.d子目录中引入基于浏览器的HTTP配置(第29行)。本博文广泛使用include指令来提高可读性并实现配置某些部分的自动化。

api_gateway.conf文件定义了将NGINX Plus公开为客户端的API网关的虚拟服务器。此配置公开API网关在单个入口点https://api.example.com/(第13行)发布的所有API,受第16到21行配置的TLS保护。请注意,此配置纯粹是HTTPS - 没有明文HTTP侦听器。我们希望API客户端知道正确的入口点并默认进行HTTPS连接。

此配置是静态的 - 各个API及其后端服务的详细信息在第24行的include伪指令引用的文件中指定。第27到30行处理日志记录默认值和错误处理,并在响应中讨论错误部分如下。

一些API可以在单个后端实现,但是出于弹性或负载平衡的原因,我们通常期望存在多个API。使用微服务API,我们为每个服务定义单独的后端;它们一起作为完整的API。在这里,我们的Warehouse API被部署为两个独立的服务,每个服务都有多个后端。

API网关发布的所有API的所有后端API服务都在api_backends.conf中定义。这里我们在每个块中使用多个IP地址 - 端口对来指示API代码的部署位置,但也可以使用主机名。 NGINX Plus订户还可以利用动态DNS负载平衡,自动将新后端添加到运行时配置中。

配置的这一部分首先定义Warehouse API的有效URI,然后定义用于处理对Warehouse API的请求的公共策略。

Warehouse API定义了许多块。 NGINX Plus具有高效灵活的系统,可将请求URI与配置的一部分进行匹配。通常,请求由最具体的路径前缀匹配,并且位置指令的顺序并不重要。这里,在第3行和第8行,我们定义了两个路径前缀。在每种情况下,$ upstream变量都设置为上游块的名称,该上游块分别代表库存和定价服务的后端API服务。

此配置的目标是将API定义与管理API交付方式的策略分开。为此,我们最小化了API定义部分中显示的配置。在为每个位置确定适当的上游组之后,我们停止处理并使用指令来查找API的策略(第10行)。
使用重写指令将处理移至API策略部分

重写指令的结果是NGINX Plus搜索匹配以/ _warehouse开头的URI的位置块。第15行的位置块使用=修饰符执行完全匹配,从而加快处理速度。

在这个阶段,我们的政策部分非常简单。位置块本身标记为第16行,这意味着客户端无法直接向它发出请求。重新定义$ api_name变量以匹配API的名称,以便它在日志文件中正确显示。最后,请求被代理到API定义部分中指定的上游组,使用$ request_uri变量 - 其中包含原始请求URI,未经修改。

API定义有两种方法 - 广泛而精确。每种API最合适的方法取决于API的安全要求以及后端服务是否需要处理无效的URI。

在warehouse_api_simple.conf中,我们通过在第3行和第8行定义URI前缀来使用Warehouse API的广泛方法。这意味着以任一前缀开头的任何URI都代理到相应的后端服务。使用基于前缀的位置匹配,对以下URI的API请求都是有效的:

如果唯一的考虑是将每个请求代理到正确的后端服务,则广泛的方法提供最快的处理和最紧凑的配置。另一方面,精确的方法使API网关能够通过显式定义每个可用API资源的URI路径来理解API的完整URI空间。采用精确的方法,Warehouse API的以下配置使用精确匹配(=)和正则表达式(〜)的组合来定义每个URI。

此配置更详细,但更准确地描述了后端服务实现的资源。这具有保护后端服务免于格式错误的客户端请求的优点,代价是正常表达式匹配的一些小额外开销。有了这个配置,NGINX Plus接受一些URI并拒绝其他URI无效:
使用精确的API定义,现有的API文档格式可以驱动API网关的配置。可以从OpenAPI规范(以前称为Swagger)自动化NGINX Plus API定义。此博客文章的Gists中提供了用于此目的的示例脚本。

随着API的发展,有时会发生需要更新客户端的重大更改。一个这样的示例是重命名或移动API资源。与Web浏览器不同,API网关无法向其客户端发送命名新位置的重定向(代码301)。幸运的是,当修改API客户端不切实际时,我们可以动态地重写客户端请求。

在下面的示例中,我们可以在第3行看到定价服务以前是作为库存服务的一部分实现的:rewrite指令将对旧定价资源的请求转换为新的定价服务。

动态重写URI意味着当我们最终在第26行代理请求时,我们不能再使用$ request_uri变量(正如我们在warehouse_api_simple.conf的第21行所做的那样)。这意味着我们需要在API定义部分的第9行和第14行使用稍微不同的重写指令,以便在处理切换到策略部分时保留URI。
HTTP API和基于浏览器的流量之间的主要区别之一是如何将错误传达给客户端。当NGINX Plus作为API网关部署时,我们将其配置为以最适合API客户端的方式返回错误。

顶级API网关配置包括一个定义如何处理错误响应的部分。

第27行的指令指定当请求与任何API定义都不匹配时,NGINX Plus会返回错误而不是默认错误。此(可选)行为要求API客户端仅向API文档中包含的有效URI发出请求,并防止未经授权的客户端发现通过API网关发布的API的URI结构。

第28行指的是后端服务本身产生的错误。未处理的异常可能包含我们不希望发送到客户端的堆栈跟踪或其他敏感数据。此配置通过向客户端发送标准化错误来进一步提供保护。

完整的错误响应列表在第29行的include伪指令引用的单独配置文件中定义,其前几行如下所示。如果首选不同的错误格式,并且通过更改第30行上的default_type值以匹配,则可以修改此文件。您还可以在每个API的策略部分中使用单独的include指令来定义一组覆盖默认值的错误响应。

有了这种配置,客户端对无效URI的请求就会收到以下响应。

在没有某种形式的身份验证的情况下发布API以保护它们是不常见的。 NGINX Plus提供了几种保护API和验证API客户端的方法。有关基于IP地址的访问控制列表(ACL),数字证书身份验证和HTTP基本身份验证的信息,请参阅文档。在这里,我们专注于API特定的身份验证方法。

API密钥身份验证

API密钥是客户端和API网关已知的共享密钥。它们本质上是作为长期凭证发布给API客户端的长而复杂的密码。创建API密钥很简单 - 只需编码一个随机数,如本例所示。

在顶级API网关配置文件api_gateway.conf的第6行,我们包含一个名为api_keys.conf的文件,其中包含每个API客户端的API密钥,由客户端名称或其他描述标识。

API密钥在块中定义。 map指令有两个参数。第一个定义了API密钥的位置,在本例中是在$ http_apikey变量中捕获的客户端请求的apikey HTTP头。第二个参数创建一个新变量($ api_client_name)并将其设置为第一个参数与键匹配的行上的第二个参数的值。

例如,当客户端提供API密钥7B5zIqmRGXmrJTFmKa99vcit时,$ api_client_name变量设置为client_one。此变量可用于检查经过身份验证的客户端,并包含在日志条目中以进行更详细的审核。

地图块的格式很简单,易于集成到自动化工作流程中,从现有的凭证存储生成api_keys.conf文件。 API密钥身份验证由每个API的策略部分强制执行。

客户端应在apikey HTTP头中显示其API密钥。如果此标头丢失或为空(第20行),我们发送401响应以告知客户端需要进行身份验证。第23行处理API键与地图块中的任何键都不匹配的情况 - 在这种情况下,api_keys.conf第2行的默认参数将$ api_client_name设置为空字符串 - 我们发送403响应告诉身份验证失败的客户端。

有了这个配置,Warehouse API现在可以实现API密钥身份验证。

JWT身份验证

JSON Web令牌(JWT)越来越多地用于API身份验证。原生JWT支持是NGINX Plus独有的,可以在我们的博客上验证JWT,如使用JWT和NGINX Plus验证API客户端中所述。

本系列的第一篇博客详细介绍了将NGINX Plus部署为API网关的完整解决方案。可以从我们的GitHub Gist仓库查看和下载此博客中讨论的完整文件集。本系列的下一篇博客将探讨更高级的用例,以保护后端服务免受恶意或行为不端的客户端的攻击。

原文:https://dzone.com/articles/deploying-nginx-plus-as-an-api-gateway-part-1-ngin

本文:http://pub.intelligentx.net/deploying-nginx-plus-api-gateway-part-1-nginx

讨论:请加入知识星球或者小红圈【首席架构师圈】

基于ServiceMesh服务网格的去中心化微服务管控治理平台

首先说明下我最近在思考的一个产品规划,即基于ServiceMesh服务网格思路,参考开源的Istio等实现架构来搭建一个完整的微服务治理管控平台。

在前面文章里面我就提到了,在实施微服务架构后,由于微服务将传统的单体应用进行了拆分,颗粒度更细。因此整个集成的复杂度,后续的管控治理复杂度都急剧增加。

当前也出现了类似SpingCLoud主流的微服务开发框架,实现了服务注册和发现,安全,限流熔断,链路监控等各种能力。同时对于服务注册,限流,服务链监控等本身又出现了大量的开源组件,类似服务注册的Nacos,Consul,限流熔断的Sentinel,链接监控的SKyWalking等开源组件。

当我们在思考微服务开发框架和开源组件的时候你会发现。

在SpingCLoud外的各类开源组件本身和微服务开发过程是解耦的,也就是说这些开源组件更加方便地通过配置增加管控能力,或者通过下发一个SDK包或Agent代理组件来实现管控能力。以尽量减少对微服务开发过程的影响。

而对于SpingCLoud微服务框架,在使用中有一个最大的问题就是开发态和治理态的耦合,也就是说一个微服务模块在开发的时候,你会引入很多治理态的内容。类似限流熔断,类似链路监控等能力,都需要你在开发状态增加配置文件,或对接口实现类进行扩展等。

微服务开发本身应该是一个简单的事情。

其核心是实现业务功能和规则逻辑,并暴露轻量的Http Rest API接口实现和前端交互或者实现和其它微服务模块之间的横向交互协同。

也就是说如果不考虑管控治理层面的内容,你采用最小化的SpingBoot来进行微服务开发足够的,或者你仍然可以采用传统的Java架构进行微服务开发,只要确保最终暴露Http API接口即可。

但是如果要考虑治理的内容,你会发现会引入注册中心,限流熔断,安全,服务链监控一系列的管控治理组件,导致整个微服务开发过程,集成过程都复杂化。

因此构建微服务治理平台的初衷即:

在这里还是先简单梳理下业务需求和业务功能场景。

01 服务注册和服务发现

仍然需要实现最基本的当前微服务自注册,自发现能力。这个在开发阶段需要暴露的接口增加注解还是必须的。在ServiceMesh下,由于存在本地Sidecar代理,因此在本地代理和微服务一起容器化部署下去后,会扫描微服务中需要暴露的接口,并完成微服务和API接口服务的注册工作。 也就是传统的应用开发集成中,手工接口API接口服务注册和接入的过程没有了,这个过程应该彻底地自动化掉。

注意这里的注册不仅仅是到微服务粒度,而是可以到微服务API接口粒度。

因此我们需要实现在微服务部署和交付后,微服务注册和微服务中的API接口注册全部自动完成。在微服务集群扩展的时候,相关的注册信息和配置信息也自动更新和扩展。

一个微服务模块在部署和交付后。

进入到微服务治理平台就能够看到当前有哪些微服务已经注册,进入到单个微服务里面,就可以看到当前微服务究竟有哪些细粒度的API接口已经注册。

02 服务安全和双重管理

对于一个微服务暴露的API接口,可以看到部分API接口仅仅是提供给前端微服务使用,但是部分API接口是需要提供给其它横向的微服务模块使用。

一个是前端调用后端API接口,一个是后端各个微服务中心间接口交互。

在安全管理的时候实际需要对这两类API接口分别进行管理。如果仅仅是前端功能使用,那么类似JWT+Token的安全措施即可,同时对于的日志流量并不一定需要完全记录和入库。如果是横向微服务间调用,那么安全要求更高,需要支持Token,用户名密码,IP地址验证等多种安全管控要求。

对于前后端的使用,往往仅授权到微服务层级即可。但是对于横向微服务间调用,那么服务授权必须到API接口服务粒度, 能够针对单个微服务API接口独立授权和管理。

03 服务限流熔断

同样这个功能不应该在微服务开发阶段进行任何配置或代码文件的增加。

在微服务成功的部署和交付上线后,应该能够针对微服务,微服务API接口两个不同的颗粒度进行服务限流设置。当然需要支持类似并发量,时长,错误数,数据量等多种限流熔断策略。

比如一个微服务单点能够支撑的最大并发量是1000TPS,那么这就是最基本的限流条件。我只需要设置单点能量,而不是设置集群能力。管控治理平台要管理的是通过负载均衡分发后到单个节点的流量能够控制到1000TPS。如果你部署了5个微服务节点,那么实际能够支撑的最大流量就是5000TPS。

由于采用Mesh去中心化的架构模式,因此实际微服务间的调用数据流量并不会通过微服务治理平台,微服务治理平台本身并没有太大的性能负荷压力。这个是和传统的ESB或API网关不同的地方,即API网关的限流一方面是保护API网关本身,一个是保护下游的微服务模块。

04 接口调用日志记录

注意这个功能本身也是可以灵活配置的,可以配置单个微服务,也可以配置单个API接口服务是否记录日志,包括日志记录是只记录调用时间和状态,还是需要记录想的接口调用消息报文数据。

在去中心化架构模式下,接口调用日志记录相对来说很容易实现。

即通过Sidecar边车首先对消息和数据流量进行拦截,任何将拦截的数据统一推送到消息中间件,消息中间件再将日志信息存入到分布式文件存储或对象存储中。

对于接口调用日志本身应该区分日志头信息和消息日志信息,对于日志头调用记录信息应该还需要推送到类似ELK组件中,以方便进行关键日志的审计和问题排查。

05 服务链路跟踪和监控

注意,在传统的服务链跟踪中,需要在微服务端配置Agent代理。而采用Mesh化解决方案后,该部分代理能力也移动到了Sidecar边车代理中实现。

服务链路监控不仅仅是微服务和API接口间的调用链路,也包括融入常规APM应用性能监控的能力,能够实现前端界面操作后发起的整个应用链路监控。

应用链路监控一方面是进行日志和错误分析,一方面是进行性能问题排查和优化。

06 和DevOps和容器云的集成

简单来说就是开发人员只需要按照标准规范开发单个微服务模块,然后走DevOps持续集成和交付过程进行部署。

在和DevOps平台进行集成后,DevOps在进行自动化部署前会下发Sidecar代理边车,实现对微服务本身的流量拦截和各种管控治理能力。在整个过程中Sidecar对开发者不可见,满足最基本的服务透明要求。

在通过DevOps部署到容器云平台后,满足基于资源调度策略进行后续微服务集群资源的自动化动态扩展能力。同时微服务在扩展后自动进行相应的集群注册,微服务API接口注册等操作。

在传统的SpingCLoud开发框架中,本身注册中心包括了对微服务模块的心跳检查和节点状态监控能力。在和Kurbernetes集群集成和融合后,完全可以采用Kurbernetes集群本身的心跳监控能力。

简单总结

最后总结下,整个微服务治理平台基于ServiceMesh去中心化架构思路来定制,但是需要实现类似传统ESB总线或API网关的所有管控治理能力。

对于最终的使用者来说并不关心治理能力实现是否是去中心化架构,而更加关心两个点。第一个点是开发阶段不要引入治理要求,第二就是能够实现核心能力的集中化管控和可灵活配置扩展。

也就是你可能上层看到的是一个传统的SOA治理管控平台,但是底层却是采用了去中心化的ServiceMesh架构来实现微服务治理管控能力。

什么是 微服务

微服务架构是一种方法,其中单个应用程序由许多松散耦合且可独立部署的较小服务组成。

微服务(或微服务架构)是一种云原生架构方法,其中单个应用程序由许多松散耦合且可独立部署的较小组件或服务组成。

这些服务通常

虽然关于微服务的大部分讨论都围绕架构定义和特征展开,但它们的价值可以通过相当简单的业务和组织优势来更普遍地理解:

微服务也可以通过它们 不是 什么来理解。

与微服务架构最常进行的两个比较是单体架构和面向服务的架构 (SOA)。

微服务和单体架构之间的区别在于,微服务由许多较小的、松散耦合的服务组成一个应用程序,而不是大型、紧密耦合的应用程序的单体方法

微服务和 SOA 之间的区别可能不太清楚。

虽然可以在微服务和 SOA 之间进行技术对比,尤其是围绕 企业服务总线 (ESB) 的角色,但更容易将差异视为 范围之一 。

SOA 是企业范围内的一项努力,旨在标准化 组织中 所有 Web 服务相互通信和集成的方式,而微服务架构是特定于应用程序的。

微服务可能至少与开发人员一样受高管和项目负责人的欢迎。

这是微服务更不寻常的特征之一,因为架构热情通常是为软件开发团队保留的。

原因是微服务更好地反映了许多业务领导者希望构建和运行他们的团队和开发流程的方式。

换句话说,微服务是一种架构模型,可以更好地促进所需的操作模型。

在IBM 最近对 1,200 多名开发人员和 IT 主管进行的一项调查中,87% 的微服务用户同意微服务的采用是值得的。

也许微服务最重要的一个特点是,由于服务更小并且可以独立部署,它不再需要国会的法案来更改一行代码或在应用程序中添加新功能。

微服务向组织承诺提供一种解毒剂,以解决与需要大量时间的小改动相关的内心挫败感。

它不需要博士学位。

在计算机科学中看到或理解一种更好地促进速度和敏捷性的方法的价值。

但速度并不是以这种方式设计服务的唯一价值。

一种常见的新兴组织模型是围绕业务问题、服务或产品将跨职能团队聚集在一起。

微服务模型完全符合这一趋势,因为它使组织能够围绕一个服务或一组服务创建小型、跨职能的团队,并让他们以敏捷的方式运行。

微服务的松散耦合还为应用程序建立了一定程度的故障隔离和更好的弹性。

服务的小规模,加上清晰的边界和沟通模式,使新团队成员更容易理解代码库并快速为其做出贡献——在速度和员工士气方面都有明显的好处。
在传统的 n 层架构模式中,应用程序通常共享一个公共堆栈,其中一个大型关系数据库支持整个应用程序。

这种方法有几个明显的缺点——其中最重要的是应用程序的每个组件都必须共享一个公共堆栈、数据模型和数据库,即使对于某些元素的工作有一个清晰、更好的工具。

它造成了糟糕的架构,并且对于那些不断意识到构建这些组件的更好、更有效的方法是可用的开发人员来说是令人沮丧的。

相比之下,在微服务模型中,组件是独立部署的,并通过 REST、事件流和消息代理的某种组合进行通信——因此每个单独服务的堆栈都可以针对该服务进行优化。

技术一直在变化,由多个较小的服务组成的应用程序更容易和更便宜地随着更理想的技术发展而变得可用。
使用微服务,可以单独部署单个服务,但也可以单独扩展它们。由此产生的好处是显而易见的:如果做得正确,微服务比单体应用程序需要更少的基础设施,因为它们只支持对需要它的组件进行精确扩展,而不是在单体应用程序的情况下对整个应用程序进行扩展。
微服务的显着优势伴随着重大挑战。

从单体架构到微服务意味着更多的管理复杂性——更多的服务,由更多的团队创建,部署在更多的地方。

一项服务中的问题可能会导致或由其他服务中的问题引起。

日志数据(用于监控和解决问题)更加庞大,并且在服务之间可能不一致。

新版本可能会导致向后兼容性问题。

应用程序涉及更多的网络连接,这意味着出现延迟和连接问题的机会更多。

DevOps 方法可以解决其中的许多问题,但 DevOps 的采用也有其自身的挑战。

然而,这些挑战并没有阻止非采用者采用微服务——或者采用者深化他们的微服务承诺。

新的 IBM 调查数据 显示,56% 的当前非用户可能或非常可能在未来两年内采用微服务,78% 的当前微服务用户可能会增加他们在微服务上投入的时间、金钱和精力

微服务架构通常被描述为针对 DevOps 和持续集成/持续交付 (CI/CD) 进行了优化,在可以频繁部署的小型服务的上下文中,原因很容易理解。

但另一种看待微服务和 DevOps 之间关系的方式是,微服务架构实际上 需要 DevOps 才能成功。

虽然单体应用程序具有本文前面讨论过的一系列缺点,但它们的好处是它不是一个具有多个移动部件和独立技术堆栈的复杂分布式系统。

相比之下,鉴于微服务带来的复杂性、移动部件和依赖项的大量增加,在部署、监控和生命周期自动化方面没有大量投资的情况下使用微服务是不明智的。

虽然几乎任何现代工具或语言都可以在微服务架构中使用,但有一些核心工具已成为微服务必不可少的边界定义:

微服务的关键要素之一是它通常非常小。

(没有任意数量的代码可以确定某物是否是微服务,但名称中的“微”就在那里。)

当Docker在 2013 年迎来现代容器时代时,它还引入了与微服务最密切相关的计算模型。

由于单个容器没有自己的操作系统的开销,它们比传统的虚拟机更小更轻,并且可以更快地启动和关闭,使其成为微服务架构中更小、更轻的服务的完美匹配.

随着服务和容器的激增,编排和管理大量容器很快成为关键挑战之一。

Kubernetes是一个开源容器编排平台,已成为最受欢迎的编排解决方案之一,因为它做得非常好。

微服务通常通过 API 进行通信,尤其是在首次建立状态时。

虽然客户端和服务确实可以直接相互通信,但 API 网关通常是一个有用的中间层,尤其是当应用程序中的服务数量随着时间的推移而增长时。

API 网关通过路由请求、跨多个服务扇出请求以及提供额外的安全性和身份验证来充当客户端的反向代理。

有多种技术可用于实现 API 网关,包括 API 管理平台,但如果使用容器和 Kubernetes 实现微服务架构,则网关通常使用 Ingress 或最近的Istio 来实现。
虽然最佳实践可能是设计无状态服务,但状态仍然存在,服务需要了解它。

虽然 API 调用通常是为给定服务初始建立状态的有效方式,但它并不是保持最新状态的特别有效方式。

不断的轮询,“我们到了吗?” 保持服务最新的方法根本不切实际。

相反,有必要将建立状态的 API 调用与消息传递或事件流结合起来,以便服务可以广播状态的变化,而其他相关方可以监听这些变化并进行相应的调整。

这项工作可能最适合通用消息代理,但在某些情况下,事件流平台(例如Apache Kafka)可能更适合。

通过将微服务与事件驱动架构相结合,开发人员可以构建分布式、高度可扩展、容错和可扩展的系统,可以实时消费和处理大量事件或信息。
无服务器架构将一些核心云和微服务模式得出其合乎逻辑的结论。

在无服务器的情况下,执行单元不仅仅是一个小服务,而是一个函数,它通常可以只是几行代码。

将无服务器功能与微服务分开的界限很模糊,但通常认为功能比微服务还要小。

无服务器架构和功能即服务 (FaaS)平台与微服务的相似之处在于,它们都对创建更小的部署单元和根据需求精确扩展感兴趣。

微服务不一定与云计算完全相关,但它们如此频繁地结合在一起有几个重要原因——这些原因超越了微服务成为新应用程序的流行架构风格以及云成为新应用程序的流行托管目的地的原因。

微服务架构的主要优势之一是与单独部署和扩展组件相关的利用率和成本优势。

虽然这些优势在一定程度上仍然存在于本地基础设施中,但小型、独立可扩展的组件与按需、按使用付费的基础设施相结合是可以找到真正成本优化的地方。

其次,也许更重要的是,微服务的另一个主要好处是每个单独的组件都可以采用最适合其特定工作的堆栈。

当您自己管理堆栈扩散时,可能会导致严重的复杂性和开销,但是将支持堆栈作为云服务使用可以大大减少管理挑战。

换句话说,虽然推出自己的微服务基础设施并非不可能,但不可取,尤其是刚开始时。

在微服务架构中,有许多常见且有用的设计、通信和集成模式有助于解决一些更常见的挑战和机遇,包括:

例如,在桌面上使用的应用程序将具有与移动设备不同的屏幕尺寸、显示和性能限制。

BFF 模式允许开发人员使用该界面的最佳选项为每个用户界面创建和支持一种后端类型,而不是尝试支持适用于任何界面但可能会对前端性能产生负面影响的通用后端。
例如,在电子商务网站上,产品对象可能通过产品名称、类型和价格来区分。

聚合是应被视为一个单元的相关实体的集合。

因此,对于电子商务网站,订单将是买家订购的产品(实体)的集合(集合)。

这些模式用于以有意义的方式对数据进行分类。
在微服务架构中,服务实例会因伸缩、升级、服务故障甚至服务终止而动态变化。

这些模式提供了发现机制来应对这种短暂性。

负载平衡可以通过使用 健康 检查和服务故障作为重新平衡流量的触发器来使用服务发现模式。
适配器模式的目的是帮助翻译不兼容的类或对象之间的关系。

依赖第三方 API 的应用程序可能需要使用适配器模式来确保应用程序和 API 可以通信。
这个色彩缤纷的名字指的是藤蔓(微服务)如何随着时间的推移慢慢地超越并扼杀一棵树(单体应用程序)。

虽然有很多模式可以很好地完成微服务,但同样数量的模式可以很快让任何开发团队陷入困境。

其中一些——改写为微服务“不要”——如下:

一旦应用程序变得太大且难以轻松更新和维护,微服务是一种管理复杂性的方法。

只有当您感觉到单体架构的痛苦和复杂性开始蔓延时,才值得考虑如何将该应用程序重构为更小的服务。

在你感受到那种痛苦之前,你甚至没有真正拥有需要重构的单体。
尝试在没有 a) 适当的部署和监控自动化或 b) 托管云服务来支持您现在庞大的异构基础设施的情况下进行微服务,会带来很多不必要的麻烦。

省去你自己的麻烦,这样你就可以把时间花在担心状态上。
最好倾向于更大的服务,然后只在它们开始开发微服务解决的特征时才将它们分开——即部署更改变得困难和缓慢,通用数据模型变得过于复杂,或者不同部分服务有不同的负载/规模要求。
微服务和 SOA 之间的区别在于,微服务项目通常涉及重构应用程序以便更易于管理,而 SOA 关注的是改变 IT 服务在企业范围内的工作方式。

一个演变成 SOA 项目的微服务项目可能会因自身的重量而崩溃。
你最好从一个你可以处理的速度开始,避免复杂性,并尽可能多地使用现成的工具。

随行付的微服务共享平台与传统的SDK和API有什么区别?

简单的说,黑少微服务的本质是以共享的“通用”微服务来重构整个软件开发流程,其能够更加灵活的支持企业的个性化,企业甚至可以自己直接在这些通用微服务的基础上进行个性化的定制,而这对于SDK和API基本上是不可能做到的。 关于微服务api管理平台和微服务入口的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 微服务api管理平台的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于微服务入口、微服务api管理平台的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:java中幂指数值的运算代码解析
下一篇:api接口文档专业工具(api接口文档怎么看)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~