系统接口设计文档(系统接口设计说明书)

网友投稿 564 2023-03-12


本篇文章给大家谈谈系统接口设计文档,以及系统接口设计说明书对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享系统接口设计文档的知识,其中也会对系统接口设计说明书进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

求操作系统接口:Windows命令接口 设计(C++编的) 谢谢

基于XML的配置文件访问接口设计和实现(1)
目录
摘要
配置文件结构
XmlConfigReader类的实现
XmlConfigReader类的使用
摘要
在进行程序开发过程中,经常要将一些程序设置/使用的信息储存起来.由于这些信息和程序的设置/使用相关,与程序有相当的独立性,所以不可能硬编码到程序中.在这个时候我们选择使用基于Xml的配置文件进行存储.Microsoft的.NET Framework提供了一系列的基于.Config文件的读取的类,如System.Configuration 命名空间提供的AppSettings等类.但是此命名空间提供的类只能对配置文件进行读取,不能进行设置.所以在这里,我们实现自己的一个基于Xml的配置文件的类XmlConfigReader/XmlConfigWriter.
配置文件的结构
为了达到与原有的,系统自带的(.Config)配置文件的兼容性,我们选择使用类似.Config 文件的结构.示例如下:
<?xml version="1.0" encoding="utf-8" ?
<configuration
<appSettings
<add key="TimeOut" value="5000"/
<add key="UserName" value="client7" /
<add key="FileServerPort" value="8050" /
<add key="SpliteCharsForCMD" value=":"/
<add key="SpliteCharsForItem" value=";"/
<add key="SpliteCharsForSubItem" value=","/
</appSettings
<SockBaseSettings
<addd key="ServerIP" value="localhost"/
</SockBaseSettings
</configuration
所有的要设置的信息都放在Configuration节点的子节点(如appSettings/SockBaseSettings)的子节点中,这种结构有助于将不同的设置的信息进行归类/统一.结构和系统的.Config结构基本类似.这样就可以很方便的将此自定义的结构转为.Config文件.
XmlConfigReader类的实现
现在文件的基本结构已完成了,现在就开始编码,完成XmlConfigReader.
由于配置文件是以文件的形式放在硬盘上面的,所以这个XmlConfigReader类在解析Xml文件前得得到文件的路径.
public class XmlConfigReader
{
private string _filepath;
public XmlConfigReader(string filepath){
_filepath = Path.GetFullPath(filepath).ToUpper();
}
}
好,现在可以得到文件路径了.然后就是对配置文件进行解析了.在这里,我们选用.NET Framework提供的System.Xml命名空间中的轻量级的XmlTextReader来对配置文件进行解析.对应的XmlConfigReader中的函数定义如下:
public string Process(string sectionName,string key){
bool inConfiguration = false;
bool inSection = false;
string values;
XmlTextReader reader = new XmlTextReader(_filepath);
while( reader.Read()){
if( reader.IsStartElement()){
if( reader.Prefix == String.Empty)
{
if( reader.LocalName == "configuration")
{
inConfiguration = true;
}
else if( inConfiguration == true){
if( reader.LocalName == sectionName){
inSection = true;
}
else if( inSection reader.LocalName == "add"){
if( reader.GetAttribute("key") == null || reader.GetAttribute("value") == null)
{
throw new Exception(sectionName + " key or value is null");
}
if( reader.GetAttribute("key") == key){
values = reader.GetAttribute("value");
break;
}
}
}
}
}
}
reader.Close();
return values;
}
通过XmlTextReader的Read()函数对Xml文件中的节点进行遍历.同时先判断是否属于configuration节点中,再判断是否属于相应的sectionName中.只有在这两部分同时成立的时候才判断是否是相应的Key.如果是,得到其Value,并返回.
XmlConfigReader类的使用
好了,现在通过XmlConfigReader可以对配置文件进行读取了,这里我们看看实际使用的代码:
public class TestXmlConfigReader{
public void GetValues(){
XmlConfigReader reader = new XmlConfigReader(@"AppConfig.xml");
String Temp;
// Get appSettings username value
Temp = reader.Process("appSettings",”UserName");
// Get SockBaseSettings ServerIP value
Temp = Reader.Process(“SockBaseSettings”,”ServerIP”);
}
}
总结
通过XmlConfigReader类,我们可以很方便的自定义我们自己的配置文件.
基于XML的配置文件访问接口设计和实现(2)
目录
摘要
XmlConfigWriter类的实现
XmlConfigWriter类的使用
摘要
在进行程序开发过程中,经常要将一些程序设置/使用的信息储存起来.由于这些信息和程序的设置/使用相关,与程序有相当的独立性,所以不可能硬编码到程序中.在这个时候我们选择使用基于Xml的配置文件进行存储.Microsoft的.NET Framework提供了一系列的基于.Config文件的读取的类,如System.Configuration 命名空间提供的AppSettings等类.但是此命名空间提供的类只能对配置文件进行读取,不能进行设置.所以在这里,我们实现自己的一个基于Xml的配置文件的类XmlConfigReader/XmlConfigWriter.
XmlConfigWriter类的实现
由于要对配置文件进行写入,而且可能写入的次数比较多.所以这里我们不使用轻便的XmlTextWriter,使用XmlDocument.XmlDocument可以在内存中修改所有的Xml的节点,只有等到显式的调用Save函数的时候才会保存Xml文件.在有大量修改的时候,性能要好一些.
同样的,先实现XmlConfigWriter的构造函数
public class XmlConfigWriter
{
private string _filepath;
private XmlDocument doc ;
public XmlConfigWriter(string filepath)
{
_filepath = Path.GetFullPath(filepath);
doc =new XmlDocument();
doc.Load(_filepath);
}
}
通过构造函数,将配置文件的路径传进去,同时调用XmlDocument的Load方法,将此文件加载到内存中.
这里我们使用的是XmlDocument类.它实现 W3C 文档对象模型 (DOM) 级别 1 核心 (Level 1 Core) 和核心 DOM 级别 2 (Core DOM Level 2)。DOM 是 XML 文档的内存中(缓存)树状表示形式,允许对该文档的导航和编辑.通过XmlDocument,我们就可以很方便的在内存中直接操作节点.
.对配置文件的写入,不外忽三种,一种就是新插入一个节点,一种就是对现有节点的修改,最后一个就是删除现有的节点.我们首先从插入开始入手.代码如下:
private XmlNode CreateXmlNode(string localname){
return doc.CreateNode(XmlNodeType.Element,localname,"");
}
private XmlAttribute CreateXmlAttribute(string localname){
return doc.CreateAttribute("",localname,"");
}
public void AddSection(string section){
XmlNode secNode = doc.SelectSingleNode("/configuration/"+section);
if(secNode != null){
return;
}
doc.DocumentElement.AppendChild(CreateNode(section));
}
public void AddKey(string section,string key,string value){
XmlNode secNode = doc.SelectSingleNode("/configuration/"+section);
if( doc.SelectSingleNode("/configuration/" + section + "/add[@key=\"" + key + "\"]") != null)
{
return;
}
XmlNode chi = CreateXmlNode("add");
XmlAttribute att = CreateXmlAttribute("key");
att.Value = key;
chi.Attributes.Append(att);
att = CreateXmlAttribute("value");
att.Value = value;
chi.Attributes.Append(att);
secNode.AppendChild(chi);
}
对于配置文件的插入,有两种情况,一个就是插入一个新的Section节点(即appSettings/SockBaseSettings这样的节点),一个就是在当前的Section节点下面插入一个新的add节点.在上面的代码中,对于插入节点的操作,都是首先通过doc的SelectSingleNode函数来判断是否已存在此同名节点,如果存在,则直接return,避免创建同名的节点.但是,由于在最终使用的add节点是分属于不同的Section节点的,所以只是判断在同一个Section节点下面的此节点不能同名.
如果不存在同名的节点,就通过secNode.AppentChild函数将此新建的(通过CreateXmlNode函数)节点加入到doc对象中.同时,对于add节点,通过CreateXmlAttribute函数及XmNode.Attributes.Appent函数将其key / value属性加入到此节点中.这样,插入操作就完成了.
接着我们来完成删除操作.删除操作直接通过XmlDocument的SelectSingleNode得到目标节点的父节点,再通过XmlNode.RemoveChild操作将其删除.代码如下:
public void DeleteSection(string section){
XmlNode secNode = doc.SelectSingleNode("/configuration/"+section);
doc.DocumentElement.RemoveChild(secNode);
}
public void DeleteKey(string section,string key){
XmlNode secNode = doc.SelectSingleNode("/configuration/" + section + "/add[@key=\"" + key + "\"]");
if(secNode != null)
{
secNode.ParentNode.RemoveChild(secNode);
}
}
现在开始修改操作.对于修改操作,思路是这样的,首先通过XmlDocument的SelectSingleNode搜索,看是否有满足条件的节点.如果没有,直接return,如果存在,则分两情况.对于add节点,只是直接修改其value属性.对于Section节点,则是通过遍历把其下所有的子节点(add节点)得到,再把此Section节点删除,再生成一个新的节点(这个新的节点的Name就为要设置的值),再把得到的所有子节点再赋给这个新的节点.代码如下:
public void ModifySection(string oldSection,string newSection){
XmlNode secNode = doc.SelectSingleNode("/configuration/"+oldSection);
XmlNodeList list = secNode.ChildNodes;
doc.DocumentElement.RemoveChild(secNode);
secNode = doc.CreateNode(XmlNodeType.Element,newSection,"");
foreach( XmlNode i in list){
secNode.AppendChild(i);
}
doc.DocumentElement.AppendChild(secNode);
}
public void ModifyKey(string section,string key,string value){
XmlNode secNode = doc.SelectSingleNode("/configuration/" + section + "/add[@key=\"" + key + "\"]");
if(secNode != null)
{
secNode.Attributes["value"].Value = value;
}
}
好了,插入,修改,删除操作到现在基本完成了,但是现在还只是在内存中进行操作,还不是对实际的文件进行操作.这个时候,我们就还得通过XmlDocument.Save函数把内存中修改好的Xml文件写入到文件中去.代码如下:
public void Save(){
doc.Save(_filepath);
}
public void Save(string filepath)
{
doc.Save(filepath);
}
XmlConfigWriter类的使用
使用方法很简单.先产生一个XmlConfigWriter对象,通过构造函数把配置文件传进去,再通过Add/Modify/Delete等函数进行操作.代码如下:
XmlConfigWriter Writer = new XmlConfigWriter(@”appconfig.xml”);
Writer.AddSection(“appSettings”);
Writer.AddKey(“appSettings”,”ServerIP”,”localhost”);
Writer.ModifyKey(“appSettings”,”ServerIP”,”127.0.0.1”);
Writer.ModifySection(“appSettings”,”SockBaseSettings”);
Writer.DeleteKey(“SockBaseSettings”,”ServerIP”);
Writer.DeleteSection(“SockBaseSettings”);
Writer.Save();
总结
通过编写XmlConfigWriter,我们学会使用XmlDocument的使用.
基于XML的配置文件访问接口设计和实现(3)
目录
摘要
增加缓存支持
增加配置文件监视
增加ConfigurationSettings类
摘要
前面的两篇中,我们实现了XmlConfigReader和XmlConfigWriter的基本功能.由于XmlConfigReader的实现方式是每请求一次,就去解析配置文件一次,性能很低下.同时,为了更方便使用,我们增加一个ConfigurationSettings类,用来调用XmlConfigReader和XmlConfigWriter,使之用起来和System.Configuration中的类使用方式一样.
增加缓存支持
由于XmlConfigReader的实现方式是请求一次,解析配置文件一次,而且配置文件的信息在程序运行的时会大量使用,这样子显然效率太低.因此,这里就要使用到缓存.
缓存,其实就相当于一个静态的变量,在整个程序运行时是唯一的,通过这样的一个变量,把信息存储到这个变量里面,在程序的其它地方就可以直接得到这个信息了.从而避免了频繁的解析配置文件.这里,我们选择使用Hashtable做为缓存变量.
在MSDN中,我们可以查到System.Configuration命名空间中的AppSettings类返回的是一个NameValueCollection(Key/Value键值对).为了方便使用,我们将配置文件解析后的信息也存成NameValueCollection这样的集合.
这样定义好了后,对于Hashtable中的Key设置为Section节点的名字(appSettings/SockBaseSettings),其Value值即为此节点的所有子节点的NameValueCollection类的对象.
修改代码.给XmlConfigReader增加一个静态Hashtable变量,并修改相关函数.把得到的信息直接以NameValueCollection的形式存入到此Hashtable中.
private static Hashtable confTypes = new Hashtable();
private string rootname;
public void Process(){
XmlTextReader reader = new XmlTextReader(_filepath);
while( reader.Read()){
if( reader.IsStartElement()){
#region Analyze the files
if( reader.Prefix == String.Empty)
{
if( reader.LocalName == "configuration")
{
inConfiguration = true;
}
else if( inConfiguration == true){
if(reader.LocalName == "add")
{
if( reader.GetAttribute("key") == null || reader.GetAttribute("value") == null)
{
throw new Exception(rootname + " key or value is null");
}
AddKey(tables,reader.GetAttribute("key"),reader.GetAttribute("value"));
}
else
{
rootname = reader.LocalName;
}
}
}
#endregion
}
else if ( reader.LocalName == "configuration"){
inConfiguration = false;
}
}
reader.Close();
}
private void AddKey(string key,string value){
NameValueCollection collection ;
if(confTypes.ContainsKey( rootname )){
collection = (NameValueCollection) confTypes [rootname];
}
else{
lock(confTypes.SyncRoot){
collection = new NameValueCollection();
confTypes.Add( rootname,collection);
}
}
collection.Add(key,value);
}
上面代码中,我们修改了Process函数.把原来的直接return结果的地方改成调用AddKey函数.通过一个类成员 rootname临时储存当前的SectionName,通过AddKey把得到的Key/Value加入到Hashtable中.
现在这样修改后,就不能直接通过Process得到我们想到得到的Key的Value了.所以我们再写一个函数,
public NameValueCollection GetCollection(string SectionName){
if( confTypes.ContainsKey(SectionName)){
return (NameValueCollection)confTypes[SectionName];
}
else{
throw new Exception(confName + " is not found in XmlConfiguration files");
}
}
这里,我们直接通过SectionName得到此节点所有的子节点的NameValueCollection集合.这样,我们就可以得到我们想要的值了.
增加配置文件监视
上面的代码实现了配置文件的缓存.大大提高了灵活性.但是存在一个问题,就是,如果配置文件修改了,这个缓存不会自动更新.
要解决这个问题,我们得使用FileSystemWatcher这个类,用来订阅文件修改消息,进而更新缓存.由于在第一次解析前就要把此配置文件加入到监视文件表中,所以我们修改XmlConfigReader,增加一个静态的FileSystemWatcher,用来保存监视文件的对象,增加一个静态的Bool值表明是否修改过.再修改构造函数,使配置文件在一开始就加入到监视列表中.代码如下:
Private static FileSystemWatcher watch = new FileSystemWatcher();
Private static bool isModify = true;
public XmlConfigReader(string filepath){
_filepath = Path.GetFullPath(filepath).ToUpper();
watch.IncludeSubdirectories = false;
watch.Path = Path.GetDirectoryName(filepath);
watch.NotifyFilter = NotifyFilters.Size | NotifyFilters.LastWrite;
watch.Filter = Path.GetFileName(filepath);
watch.Changed += new FileSystemEventHandler(Change_Even);
watch.EnableRaisingEvents = true;
}
由于是通过事件机制实现文件修改通知的,所以我们还要实现Chane_Even这个函数,通过这个函数修改isModify的值.
private void Change_Even(object sender, FileSystemEventArgs e){
isModify = true;
}
这样子,对于配置文件的监视的代码就完成了,现在就是修改我们的GetCollection代码的时候了.
修改后的代码如下:
public NameValueCollection GetCollection(string SectionName){
if( isModify ){
lock(confTypes.SyncRoot){
confTypes.Clear();
Process();
}
isModify = false;
}
if( confTypes.ContainsKey(SectionName)){
return (NameValueCollection)confTypes[SectionName];
}
else{
throw new Exception(confName + " is not found in XmlConfiguration files");
}
}
到现在,整个XmlConfigReader的代码已完成了,可以实现对文件的监视,从而动态修改缓存中的值.
增加ConfigurationSettings类
为了便于使用,我们增加了一个ConfigurationSettings的类,使用他的用法和System.Configuration命名空间中的类的用法一样.代码定义如下:
public class ConfigurationSettings : XmlConfigWriter
{
private static string _filepath = @"AppConfig.xml";
public static string DefaultFilePath
private static XmlConfigReader reader;
{
get{return _filepath;}
set{_filepath = Path.GetFullPath(value);}
}
public static NameValueCollection AppSettings
{
get{
if( reader == null){
reader = new XmlConfigReader(DefaultFilePath);
}
return reader.GetCollection("appSettings");
}
}
public static NameValueCollection GetConfig(string sectionName){
get{
if( reader == null){
reader = new XmlConfigReader(DefaultFilePath);
}
return reader.GetCollection(sectionName);
}
}

数据接口

系统在运行中将用到大量系统接口设计文档的数据资料系统接口设计文档,必须在设计初始就明确各类数据标准以及各子系统的数据接口。根据各子系统设计的数据项需求及产生的成果数据项,确定各项数据的数据表,定义表结构,进行代码设计,然后由数据库系统实施,同时形成文档,作为系统的数据标准,统一执行。

数据的分类、编码设计、数据库的设计、地图制图、数据录入和质量检验,均遵循国家和行业主管部门的标准、规范、规程;如没有统一的规范规程,则参照相关的规程进行规范化设计。系统有关的数据定义全部形成文档,作为技术规范,统一使用。

各子系统在设计时应当明确与相关子系统的数据关系,提出相关子系统必须提交的数据表要求和系统运行过程中的提交时间,对应子系统按照该提交数据要求在系统中进行相应设计和开发,保证数据流动的通畅,这是基于数据的系统集成方案的关键,是数据平台接口设计的重要依据。系统间数据关系须形成文档,作为系统间数据接口标准规范,统一执行。

数据关系与数据标准相辅相成,共同定义了数据平台与各个子系统之间的输入、输出接口。在数据接口设计中应重点考虑以下几个方面:

(1)遥感数据与图形数据的接口:利用图形配准技术,予以解决。遥感数据是动态监测专题图件产生的基础,必须经过坐标配准,才能产生专题图件。配准过程由遥感动态监测子系统执行,需要应用综合数据库中的地形图数据。在配准后遥感数据与图形数据的套合依据空间坐标进行。

(2)空间数据与属性数据的接口:利用关键字建立联系。在数据建库过程中依据数据标准有关文档规定建立图形库和属性库结构,确定关键字段,同时定义关键字段编码方案,保证关键字段唯一性。在数据采集过程中对关键字段赋予代码。系统维护过程中的数据采集也必须依据编码方案对关键字段赋值。在应用系统中使用时只需建立图形库与属性库间的关联即可。

( 3) 子系统之间数据的接口: 各子系统之间数据的交换通过数据库进行,所以子系统间数据接口本质上是子系统与后台数据库的接口; 在建立数据库时,已经由数据库管理系统依据系统间数据关系建立了接口。

系统内数据关系包括:

数据管理与数据库子系统接受业务处理与信息服务子系统录入的有关基础信息、遥感动态监测子系统输入的遥感数据及各子系统产生的成果数据,为各子系统提供综合基础数据、专题数据和成果数据。

遥感动态监测子系统需要数据库系统管理的遥感数据、地形图数据和历史专题数据。

生态专业分析子系统需要遥感动态监测子系统产生的专题图件和综合数据库中的历史专题图件以及属性资料。

业务处理与信息服务子系统需要数据库子系统管理的综合基础数据和各专业应用子系统产生的成果数据。

如何简单设计接口测试用例

接口测试是项目测试的一部分 系统接口设计文档,它测试的主要对象是接口 ,是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与所测系统之间以及内部各系统之间的交互点。测试的重点是检查数据交互、传递、和控制管理过程以及系统间的相互依赖关系等。 如何设计接口测试用例系统接口设计文档?首先,明确出发点,和所有的测试一样 ,接口测试出发点是你要证明所测的程序是错误的。以这个出发点为导向 ,你的设计行为就会尽量朝这个方向,更易发现问题 其次,选择好测试对象。对于一个系统做接口测试选择好的测试对象是接口测试关键。一个系统有无数的接口 ,每个接口如果分别测试 ,那将是很痛苦的一件事情,而且任何一个内部接口的变动 ,都将导致我们用例的不可用。 可将这些最外层的接口分为两类:一类是数据进入系统的接口系统接口设计文档;一类是数据流出系统的接口。进入系统的接口实际是我们用例的执行调用的接口。可通过变化参数对这些接口进行调用 ,模拟外部的使用;而流出的接口则是我们用例真正该验证的点。数据从哪里流出,流出时的状态如何 ,此时系统又是什么状态都是我们所应该验证的。 然后,确认完整的测试对象的功能:确认外部接口提供给使用这些接口的外部用户什么样的功能,外部用户真正需要什么样的功能。此两个功能一定要准确详细,用例的设计要严格按照测试对象功能设计才是正确的用例。 最后当出发点、对象、功能都确定系统接口设计文档了,就可以真正设计用例了。下面详细介绍下如何去设计一个结构好、可读性高、渗透性强的接口测试用例。 接口测试用例设计和测试用例设计一样,用例设计的内容应该包括:主要测试功能点、测试环境、测试数据、执行操作以及预期结果。 1)接口测试环境分为两种:一种是程序内部的环境;一种是程序的所调用外部接口的环境。 2)接口测试测试数据分为接口参数数据和用例执行所需系统数据。数据的设计、准备测试用例的数据上需要花费更多的心思。要通过好的测试数据使用例查找问题。接口参数数据需对每个参数根据测试接口的实际的功能进行分析,在符合业务逻辑的情况下进行逻辑组合排列 ,不要遗漏了某些边界值和错误点的数据。每个用例执行所需系统数据和接口参数数据尽可能的采用不一样的数据 ,使用例更容易发现问题。 3)测试功能点,如果一个接口功能复杂时推荐对接口用例进行结构划分 ,这样子用例具有更好的可读性和维护性。接口划分原则为以接口提供的功能点的不同进行合适粒度的划分。同一功能点的用例又可根据测试环境的不同、数据的不同进行用例的填充。 4)接口测试用例执行操作非常简单,就是所测接口的调用。 5)预期结果验证,这也是接口用例设计的很关键的一步 ,应该细而不冗余。每个用例均需验证 ,避免一个用例中重复做相同的验证 ,提高测试用例的效率。 如何设计接口测试用例小例子: 简单划分可以按照2个基本组成要素进行划分:1. 参数 2. 业务 以下为最简单的一种划分用例的方法,可能涵盖不全,但只为说明一种划分接口用例的方法方式以及需要考虑的测试用例的测试点 为何要如此设计,是为了更好的将用例分类为程序规定型以及业务限制型,尽量的保证覆盖,尽量细化到点的划分形式来保证工作时间的预估和计划。 所有的自动化接口的测试用例 都基本围绕三部曲进行,传数据,执行,校验返回的数据和期望数据是否一致来构成每个简单的测试用例。 有清晰的线路和清晰的思维,才能做好整体测试的掌控。

结构化分析

「 软件开发方法 」的含义:软件开发过程所遵循的办法和步骤。

软件开发活动的目的:有效地得到一个运行的系统及其支持文档(程序 + 文档),并且满足有关的质量要求(功能需求 + 非功能需求)。

「 软件开发方法学 」的含义: 规则、方法和工具的集成 ,即支持开发也支持以后的演化过程(交付运行后,系统还会变化;或者为了改错,或为了功能的递增)。

结构化方法是一种特定的软件开发方法学/一种系统化的软件开发方法,包括:

就 软件需求分析 而言,结构化分析指的是:系统化地使用 问题域 术语,给出该 问题的模型 (即“系统必须做什么?”的一个估算)。

一个抽象层是由一组确定的术语定义的,为支持需求分析中有关要使用的那些信息的表达,结构化分析方法给出了以下五个术语/符号:

数据流图是一种描述 数据变换 的图形工具,它包含的元素可以是数据流、数据存储、加工、数据源和数据潭等。

数据字典用于定义 数据流 和 数据存储 的结构,并给出构成所给出的数据流和数据存储的各数据项的基本数据类型。

数据字典还引入了一些 逻辑操作符 来定义 数据结构 。

示例:

描述加工“做什么”,即 加工逻辑 ,也包括其它一些与加工有关的信息,如执行条件、优先级、执行频率、出错处理等。

💡 描述一个加工,一般遵循如下模版:

「结构化自然语言」适用于加工的输入数据和输出数据之间的逻辑关系比较 简单 的加工描述。

示例:

「判定表」适用于加工的输入数据和输出数据之间的逻辑关系比较 复杂 的加工描述。

判定表:

示例:

「判定树」适用于加工的输入数据和输出数据之间的逻辑关系比较 复杂 的加工描述。

示例:

💡 顶层数据流图——0层数据流图——1层数据流图——...

「设计」的定义:一种软件开发活动,定义实现需求规约所需的软件结构。

设计目标:依据需求规约,在一个抽象层上建立系统软件模型,包括软件体系结构(数据和程序结构),以及详细的处理算法,产生设计规约说明书。

即: 回答如何解决问题——给出软件解决方案 。

结构化设计分为:

在总体设计层:

第一阶段:初始设计。在对给定的数据流图进行复审和精化的基础上,将其转化为初始的模块结构图。 根据穿越系统边界的数据流初步确定系统与外部的接口 。
第二阶段:精化设计。依据模块“高内聚低耦合”的原则,精化初始的模块结构图,并 设计其中的全局数据结构和每一模块的接口 。
第三阶段:设计复审阶段,(设计人员与综合评审团队)对前两个阶段得到的高层软件结构进行复审,必要时还可能需要对软件结构做一些精化工作。

基于 模块化 原理—— 高内聚、低耦合 ;

模块化的概念和基本原则(略)。

耦合:不同模块之间相互依赖程度的度量。

内聚:一个模块之内各成分之间相互依赖程度的度量。

启发式规则:根据设计准则,从 长期的软件开发实践中,总结出来的规则 。

接口设计的分类:

系统的接口设计(包括用户界面设计及与其他系统的接口设计)是由穿过系统边界的数据流定义的。

在最终的系统中,数据流将成为用户界面中的表单、报表或与其他系统进行交互的文件或通信。

用户界面应具有的特性:可使用性、灵活性、可靠性。

「数据设计」:在设计阶段必须对要存储的数据及其格式进行设计。

文件设计的主要工作: 根据使用要求、处理方式、存储的信息量、数据的活动性以及所提供的设备条件等确定文件类型 ,选择文件媒体,决定文件组织方法,设计文件记录格式,并估算文件的容量。

以下几种情况适合选择 文件存储 :

详细设计的任务:定义每一模块。

详细设计中主要引入了三种动作控制结构(顺序、选择、循环)的术语/符号。

结构化程序设计的概念:设计具有如下结构的程序:

优点:

PDL 不仅可以作为设计工具,而且可作为注释工具,直接插在源程序中间,以保持文档和程序的一致性,提高了文档的质量。

缺点:

优点:

对控制流程的描绘很直观,便于初学者掌握。

缺点:

优点:

优点:支持自顶向下逐步求精的结构化详细设计,并且严格限制了控制从一个处理到另一个处理的转移。

当算法中 包含多重嵌套 的条件选择时,用程序流程图、盒图、PAD图、PDL都不易清楚描述,这时可以 选择判断表来表达复杂的条件组合与应做的动作之间的对应关系 。

判定树是判定表的变种,也能清晰地表达复杂的条件组合与应做的动作之间的对应关系,形式简单,但简洁性不如判定表,数据元素的同一个值往往需要重复写多次,而且越接近树的叶断重复次数越多。

一切系统都是由信息流构成的(其中包含一些必要的数据变换),每一个信息流都有自己的起点数据源,有自己的归宿数据潭,有驱动信息流动的加工,因此所谓信息处理主要表现为 信息的流动 。

结构化方法是一种系统化的软件系统建模方法,从测试的角度看,结构化方法是一种特定的建立验证和确认所需标尺的方法学,包括 结构化分析 和 结构化设计 。

结构化方法的抽象层,包括:

紧紧围绕 自顶向下 、 过程抽象 、 数据抽象 和 模块化 等基本原理/原则,给出了: 完备的符号 、 可操作的过程 和 易于理解的表示工具 。并提供了:控制信息组织复杂性的机制,例如逐层分解,数据打包等,以支持将问题空间的一个问题映射为解空间的一个解。

前后端分离微服务架构如何设计

前端

前端开发人员专注业务的页面呈现,非常注重用户体验度,也是与各种角色打交道最多的。

比如:

一般前端工作包括六个部分:

后端

如果前后端职责划分很清楚的话,后端更多开发工作在于业务接口设计、业务逻辑处理以及数据的持久化存储,并提供详细的接口设计文档给前端开发人员使用。

一般后端工作包括五个部分:

1、与产品经理对接需求

2、业务 API 接口开发:根据根据需求文档进行业务接口开发

4、接口对接:与前端开发人员接口对接

5、前后端联调测试:包括页面展示以及接口数据

6、bug修复

前端开发技术栈

h5 、 css 、 nodejs / vue / angular / react 、 webpack 、 hbuilder / vscode 等

后端开发技术栈

SpringCloud / Springboot 、 SpringMVC 、 ORM 框架、数据库、缓存框架( Redis , Codis , Memcached 等),大数据框架( Hadoop / Spark / hive / Hbase / Storm / ES / Kafka )等等

技术选型

最好选择成熟稳定,易上手、开发效率高的技术,因为实际项目开发时间是有限的,开发人员没有多少精力放在学习和深度研究技术上。

数据格式

后端开发提供接口设计文档,详细写明每个接口的请求地址、请求参数、响应参数等等;一般采用 REST 风格以 JSON 格式提供数据。

接口设计

一个接口设计的好坏,直接影响到前后端的一些沟通协调问题。

依笔者的经验来看,如果后端接口不稳定,会导致前端开发人员反复修改页面数据呈现。常常出现后端开发说这是前端问题,前端开发说是后端问题,来回扯皮,沟通效率低下。

接口容量问题

一个接口的业务容量大小,往往代表前后端工作量的大小。

如果一个接口的业务容量太小,前端需要分阶段处理的事情就多,尤其是对多个接口 Ajax 异步处理;

如果一个接口的业务容量太大,那么业务耦合性高,万一需求变更,后端程序改动大,不利于程序的扩展。

一、前后端分离的思想要转变

不能老是按照传统WEB( js/h5/css/ 后端代码放在一个工程)开发思维去看待前后端分离

二、沟通成本问题

以前传统 WEB 开发,开发人员从需求到设计到开发基本上是一个人。

而前后端分离后,前端只负责页面呈现,后端更注重业务逻辑处理以及数据的持久化,双发都有自己的侧重点,工作量上有私心。

三、组织结构问题

康威定律

第一定律: Communication dictates design (组织沟通方式会通过系统设计表达出来)

第二定律: There is never enough time to do something right, but there is always enough time to do it over (时间再多一件事情也不可能做得美,但总有时间做完一件事情)

第三定律 : There is a homomorphism from the linear graph of a system to the linear graph of its design organization (线型系统和线型组织架构间有潜在的异质同态特性)

第四定律: The structures of large systems tend to disintegrate during development, qualitatively more so than with small systems (大的系统组织总是比小系统更倾向于分解)

康威定律说明以下几点

四、部署及监控运维

前后端分离后,拆分的服务会带来线上部署以及如何监控运维的复杂性。

总体来说,前后分离所带来的好处还是更明显的。一个成熟的前后端分离的团队,文档化约定,前后端职责分离、接口约定都是做得比较好的

简述GIS工程中的文档种类及作用

(1)总体设计说明书,包括系统目标、总体设计、数据设计、处理方式设计、运行设计等;
◆引言:编写的目的、背景、意义、参考资料
◆总体设计:需求规定、运行环境、基本设计概念和处理流程、软件结构
◆接口设计:用户接口、外部接口、内部接口
◆运行设计:运行模块组合、运行控制、运行时间
◆系统数据结构设计:逻辑结构设计、物理结构设计、数据结构与程序的关系
◆系统出错处理设计:出错信息、补救措施、系统恢复设计
(2)数据库设计说明书,包括所用数据库简介、数据模式设计、物理设计等。
(主要给出所使用的数据库管理系统DBMS简介,数据库的概念模型、逻辑设计和结果。)
(3)用户手册,对需求分析阶段编写的初步的用户手册进行审订;
(4)制定初步的测试计划,对测试的策略、方法和步骤提出明确的要求。 关于系统接口设计文档和系统接口设计说明书的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 系统接口设计文档的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于系统接口设计说明书、系统接口设计文档的信息别忘了在本站进行查找喔。

版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:api接口文档是什么(api接口是怎么写出来的)
下一篇:朋友圈写接口测试用例(朋友圈测试小程序)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~