本篇文章给大家谈谈python 调用dubbo接口测试,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
今天给各位分享python 调用dubbo接口测试的知识,其中也会对进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
关于jmeter测试dubbo接口方式
本文章介绍如何使用jmeter测试dubbo接口,涉及如下两种方式
1.使用官方dubbo版本包测试dubbo接口
2.通过自己编写java请求插件,实现dubbo调用
选择方式1或方式2并没有什么区别,取决于部分自研公司对dubbo进行了封装,导致官方提供的dubbo包并不适用于方式1,则可以通过方式2去调用
https://github.com/ningyu1/jmeter-plugins-dubbo/releases
解压tar将获取到的jar包放入${JMETER_HOME}\lib\ext路径下(这里获取到的jar包为jmeter-plugins-dubbo-2.7.1-jar-with-dependencies),重启jmeter应用(这里重启完应用会添加取样器会多出一个dubbo sample)
右键添加,选择线程-线程组
2.光标对准线程组右键添加-取样器-dubbo sample
此处需要关注,当方法接收的是一个String,或者List等类型的参数,可参照截图配置
那么当方法接收的参数是一个对象时,需要获取对接接口的api jar包并关联到当前测试计划
选中测试计划,点击下方浏览按钮,选择对应的jar包
传参的具体方式可参照如下
接口1返回:
接口2返回
看了下网上的大多请求都是单接口请求dubbo,这样就会导致,每次有新的接口的时候都得去更新新的请求,这里提供一个一劳永逸的方法,通过泛化调用,实现一个jar请求可适配所有接口,一般看到这个文章的可能大多都是测试的同学,对于当前方法需要对java有一定的基础,所以这个时候就体验到学习的重要性了,下面开始操作吧
file-new-project,选择maven
输入组织-坐标后点击next
按需配置名称路径后点击finsh
pom.xml配置如下
实现方式如下
打包操作
左侧窗口为生成的jar包和lib目录
这里要说明下,网上提供了一种方式,通过修改安装目录bin下jmeter.properties文件关联lib下的依赖
文件中增加如下(通过尝试,这么做会导致jmeter启动由于jar包加载顺序的问题,ui部分控件不可用)
这里我使用的是另一种更为简便的方式
将原安装目录lib下ext修改为extbak
新建ext,并将工程lib下的jar包和dobbo-jmeter-interface-1.0-SNAPSHOT.jar放入之
由于可能会用到随机函数,从extbak获取ApacheJMeter_functions.jar,也放入到新建的ext目录下
重启jmeter,稍等片刻
添加java请求
添加结果树
点击运行后,结果树信息如下
后续可自行配置断言和随机参数等
Dubbo的调用过程及工作原理
节点角色说明:
1️⃣Container:服务运行容器。
2️⃣Provider:暴露服务的服务提供方。
3️⃣Consumer:调用远程服务的服务消费方。
4️⃣Registry:服务注册与发现的注册中心。
服务提供者先启动 start,然后注册 register 服务。消费订阅 subscribe 服务,如果没有订阅到自己想获得的服务,它会不断的尝试订阅。新的服务注册到注册中心以后,注册中心会将这些服务通过 notify 到消费者。
5️⃣Monitor:统计服务的调用次数和调用时间的监控中心。
这是一个监控,图中虚线表明 Consumer 和 Provider 通过异步的方式发送消息至 Monitor,Consumer 和 Provider 会将信息存放在本地磁盘,平均一分钟发送一次信息。Monitor 在整个架构中是可选的(图中的虚线并不是可选的意思),Monitor 功能需要单独配置,不配置或者配置以后,Monitor 挂掉并不会影响服务的调用。
①服务容器 Container 负责启动加载运行服务提供者 Provider。根据 Provider 配置的文件根据协议发布服务,完成服务的初始化。
②Provider 在启动时,根据配置中的 Registry 地址连接 Registry,将 Provider 的服务信息发布到 Registry,在 Registry 注册自己提供的服务。
③Consumer 在启动时,根据消费者 XML 配置文件中的服务引用信息,连接到 Registry,向 Registry 订阅自己所需的服务。
④Registry 根据服务订阅关系,返回 Provider 地址列表给 Consumer。如果有变更,Registry 会基于长连接推送最新的服务地址信息给 Consumer。
⑤Consumer 调用远程服务时,基于 软负载均衡算法 ,先从缓存的 Provider 地址列表中选择一台进行跨进程调用服务,假如调用失败,再重新选另一台调用。
⑥服务 Provider 和 Consumer,会在内存中记录调用次数和调用时间,每分钟发送一次统计数据到 Monitor。
7.Dubbo远程调用(要配合下一篇一起看)
如果我们手动写一个简单的RPC调用,一般需要把服务调用的信息传递给服务端,包括每次服务调用的一些共用信息包括服务调用接口、方法名、方法参数类型和方法参数值等,在传递方法参数值时需要先序列化对象并经过网络传输到服务端,在服务端接受后再按照客户端序列化的顺序再做一次反序列化,然后拼装成请求对象进行服务反射调用,最终将调用结果传给客户端。Dubbo的实现也基本是相同的原理,下图是Dubbo一次完整RPC调用中经过的步骤:
首先在客户端启动时,会从注册中心拉取和订阅对应的服务列表,Cluster会把拉取的服务列表聚合成一个Invoker,每次RPC调用前会通过Directory#list获取providers地址(已经生成好的Invoker地址),获取这些服务列表给后续路由和负载均衡使用。对应上图①中将多个服务提供者做聚合。在框架内部实现Directory接口的是RegistryDirectory类,它和接口名是一对一的关系(每一个接口都有一个RegistryDirectory实例),主要负责拉取和订阅服务提供者、动态配置和路由项。
在Dubbo发起服务调用时,所有路由和负载均衡都是在客户端实现的。客户端服务调用首先会触发路由操作,然后将路由结果得到的服务列表作为负载均衡参数,经过负载均衡后会选出一台机器进行RPC调用,这3个步骤一次对应图中②③④。客户端经过路由和负载均衡后,会将请求交给底层IO线程池(如Netty)进行处理,IO线程池主要处理读写、序列化和反序列化等逻辑,因此这里一定不能阻塞操作,Dubbo也提供参数控制(decode.in.io)参数,在处理反序列化对象时会在业务线程池中处理。在⑤中包含两种类似的线程池,一种是IO线程池(Netty),另一种是Dubbo业务线程池(承载业务方法调用)。
目前Dubbo将服务调用和Telnet调用做了端口复用,子啊编解码层面也做了适配。在Telnet调用时,会新建立一个TCP连接,传递接口、方法和json格式的参数进行服务调用,在编解码层面简单读取流中的字符串(因为不是Dubbo标准头报文),最终交给Telnet对应的Handler去解析方法调用。如果不是Telnet调用,则服务提供方会根据传递过来的接口、分组和版本信息查找Invoker对应的实例进行反射调用。在⑦中进行了端口复用,Telnet和正常RPC调用不一样的地方是序列化和反序列化使用的不是Hessian方式,而是直接使用fastjson进行处理。
讲解完主要调用原理,接下来开始探讨细节,比如Dubbo协议、编解码实现和线程模型等,本篇重点主要放在⑤⑥⑦。
Dubbo协议参考了现有的TCP/IP协议,每一次RPC调用包括协议头和协议体两部分。16字节长的报文头部主要包含魔数(0xdabb),以及当前请求报文是否是Request、Response、心跳和事件的信息,请求时也会携带当前报文体内序列化协议编号。除此之外,报文头还携带了请求状态,以及请求唯一标识和报文体长度。
在消息体中,客户端严格按照序列化顺序写入消息,服务端也会遵循相同的顺序读取消息,客户端发起的请求消息体一次依次保存下列内容:Dubbo版本号、服务接口名、服务接口版本、方法名、参数类型、方法参数值和请求额外参数(attachment)。
服务端返回的响应消息体主要包含回值状态标记和返回值,其中回值状态标记包含6中:
我们知道在网络通信中(TCP)需要解决网络粘包/解包的问题,常用的方法比如用回车、换行、固定长度和特殊分隔符进行处理,而Dubbo是使用特殊符号0xdabb魔法数来分割处理粘包问题。
在实际场景中,客户端会使用多线程并发调用服务,Dubbo如何做到正确响应调用线程呢?关键在于协议头的全局请求id标识,先看原理图:
当客户端多个线程并发请求时,框架内部会调用DefaultFuture对象的get方法进行等待。在请求发起时,框架内部会创建Request对象,这时候会被分配一个唯一id,DefaultFuture可以从Request中获取id,并将关联关系存储到静态HashMap中,就是上图中的Futures集合。当客户端收到响应时,会根据Response对象中的id,从Futures集合中查找对应DefaultFuture对象,最终会唤醒对应的线程并通知结果。客户端也会启动一个定时扫描线程去探测超时没有返回的请求。
先了解一下编解码器的类关系图:
如上,AbstractCodec主要提供基础能力,比如校验报文长度和查找具体编解码器等。TransportCodec主要抽象编解码实现,自动帮我们去调用序列化、反序列化实现和自动cleanup流。我们通过Dubbo编解码继承结构可以清晰看到,DubboCodec继承自ExchageCodec,它又再次继承了TelnetCodec实现。我们前面说过Telnet实现复用了Dubbo协议端口,其实就是在这层编解码做了通用处理。因为流中可能包含多个RPC请求,Dubbo框架尝试一次性读取更多完整报文编解码生成对象,也就是图中的DubboCountCodec,它的实现思想比较简单,依次调用DubboCodec去解码,如果能解码成完整报文,则加入消息列表,然后触发下一个Handler方法调用。
编码器的作用是将Java对象转成字节流,主要分两部分,构造报文头部,和对消息体进行序列化处理。所有编辑码层实现都应该继承自ExchangeCodec,当Dubbo协议编码请求对象时,会调用ExchangeCodec#encode方法。我们来看下这个方法是如何对请求对象进行编码的:
如上,是Dubbo将请求对象转成字节流的过程,其中encodeRequestData方法是对RpcInvocation调用对象的编码,主要是对接口、方法、方法参数类型、方法参数等进行编码,在DubboCodec#encodeRequestData中对此方法进行了重写:
如上,响应编码与请求编码的逻辑基本大同小异,在编码出现异常时,会将异常响应返回给客户端,防止客户端只能一直等到超时。为了防止报错对象无法在客户端反序列化,在服务端会将异常信息转成字符串处理。对于响应体的编码,在DubboCodec#encodeResponseData方法中实现:
注意不管什么样的响应,都会先写入1个字节的标识符,具体的值和含义前面已经讲过。
解码相对更复杂一些,分为2部分,第一部分是解码报文的头部,第二部分是解码报文体内容并将其转换成RpcInvocation对象。我们先看服务端接受到请求后的解码过程,具体解码实现在ExchangeCodec#decode方法:
可以看出,解码过程中需要解决粘包和半包问题。接下来我们看一下DubboCodec对消息题解码的实现:
如上,如果默认配置在IO线程解码,直接调用decode方法;否则不做解码,延迟到业务线程池中解码。这里没有提到的是心跳和事件的解码,其实很简单,心跳报文是没有消息体的,事件又消息体,在使用Hessian2协议的情况下默认会传递字符R,当优雅停机时会通过发送readonly事件来通知客户端当前服务端不可用。
接下来,我们分析一下如何把消息体转换成RpcInvocation对象,具体在DecodeableRpcInvocation#decode方法中:
解码请求时,严格按照客户端写数据的顺序处理。
解码响应和解码请求类似,调用的同样是DubboCodec#decodeBody,就是上面省略的部分,这里就不赘述了,重点看下响应体的解码,即DecodeableRpcResult#decode方法:
如果读者熟悉Netty,就很容易理解Dubbo内部使用的ChannelHandler组件的原理,Dubbo内部使用了大量的Handler组成类似链表,依次处理具体逻辑,包括编解码、心跳时间戳和方法调用Handler等。因为Nettty每次创建Handler都会经过ChannelPipeline,大量的事件经过很多Pipeline会有较多开销,因此Dubbo会将多个Handler聚合成一个Handler。(个人表示,这简直bullshit)
Dubbo的Channelhandler有5中状态:
Dubbo针对每个特性都会实现对应的ChannelHandler,在讲解Handler的指责之前,我们Dubbo有哪些常用的Handler:
Dubbo提供了大量的Handler去承载特性和扩展,这些Handler最终会和底层通信框架做关联,比如Netty等。一次完整的RPC调用贯穿了一系列的Handler,如果直接挂载到底层通信框架(Netty),因为整个链路比较长,则需要大量链式查找和事件,不仅低效,而且浪费资源。
下图展示了同时具有入站和出站ChannelHandler的布局,如果一个入站事件被触发,比如连接或数据读取,那么它会从ChannelPipeline头部一直传播到ChannelPipeline的尾端。出站的IO事件将从ChannelPipeline最右边开始,然后向左传播。当然ChannelPipeline传播时,会检测入站的是否实现了ChannelInboundHandler,出站会检测是否实现了ChannelOutboundHandler,如果没有实现,则自动跳过。Dubbo框架中实现这两个接口类主要是NettyServerHandler和NettyClientHandler。Dubbo通过装饰者模式包装Handler,从而不需要将每个Handler都追加到Pipeline中。因此NettyServer和NettyClient中最多有3个Handler,分别是编码、解码和NettyHandler。
讲完Handler的流转机制后,我们再来探讨RPC调用Provider方处理Handler的逻辑,在DubboProtocol中通过内部类继承自ExchangeHandlerAdapter,完成服务提供方Invoker实例的查找并进行服务的真实调用。
如上是触发业务方法调用的关键,在服务暴露时服务端已经按照特定规则(端口、接口名、接口版本和接口分组)把实例Invoker存储到HashMap中,客户端调用过来时必须携带相同信息构造的key,找到对应Exporter(里面持有Invoker)然后调用。
我们先跟踪getInvoker的实现,会发现服务端唯一标识的服务由4部分组成:端口、接口名、接口版本和接口分组。
如上,Dispatcher是线程池的派发器。这里需要注意的是,Dispatcher真实的职责是创建有线程派发能力的ChannelHandler,比如AllChannelHandler、MessageOnlyChannelHandler和ExecutionChannelHanlder,其本身并不具备线程派发能力。
Dispatcher属于Dubbo中的扩展点,这个扩展点用来动态产生Handler,以满足不同的场景,目前Dubbo支持一下6种策略调用:
具体需要按照使用场景不同启用不同的策略,建议使用默认策略,如果在TCP连接中需要做安全或校验,则可以使用ConnectionOrderedDispatcher策略。如果引入新的线程池,则不可避免的导致额外的线程切换,用户可在Dubbo配置中指定dispatcher属性让具体策略生效。
在Dubbo内部,所有方法调用都被抽象成Request/Response,每次调用都会创建一个Request,如果是方法调用则返回一个Response对象。HeaderExceptionExchangeHandler就是用了处理这种场景,主要负责4中事情:
(1) 更新发送和读取请求时间戳。
(2) 判断请求格式或编解码是否有错,并响应客户端失败的具体原因。
(3) 处理Request请求和Response正常响应。
(4) 支持Telnet调用。
我们先来看一下HeaderExchangeHandler#received实现:
dubbo telnet invoke 怎么传递BigDecimal类型数据
ls
(list services and methods)
ls
显示服务列表。
ls -l
显示服务详细信息列表。
ls XxxService
显示服务的方法列表。
ls -l XxxService
显示服务的方法详细信息列表。
dubbo泛化调用使用及原理解析
通常我们想调用别人的dubbo服务时,我们需要在项目中引入对应的jar包。而泛化调用的作用是,我们无需依赖相关jar包,也能调用到该服务。
这个特性一般使用在网关类项目中,在业务开发中基本不会使用。
假设我现在要调用下面的接口服务
在xml文件做以下配置
然后注入使用
在两种调用方式中,我们都需要使用被调用接口的字符串参数生成GenericService,通过GenericService的$invoke间接调用目标接口的接口。
$invoke的三个参数分别为,方法名,方法参数类型数组,方法参数数组。
可以看到泛化调用的一个复杂性在于$invoke的第三个参数的组装,下面介绍几种复杂入参的调用方式
首先丰富提供者接口
与入参相似,虽然$invoke的返回定义为Object,实际上针对不同类型有不同的返回。
泛化调用和直接调用在消费者者端,在 使用上的区别 是,我们调用服务时使用的接口为GenericService,方法为$invoker。在 底层的区别 是,消费者端发出的rpc报文发生了变化。
在使用上,不管哪种配置方式,我们都需要配置generic=true
设置generic=true后,RefereceConfig的interfaceClass会被强制设置为GenericService
这也使得我们的RefereanceBean返回的是GenericService类型的代理。
生成的代理是GenericService的代理只是我们使用方式上的变化,更为核心的是,底层发送的rpc报文发生了什么变化。
Dubbo的rpc报文分为header和body两部分。我们这边只需要关注body部分。构造逻辑如下
那么我们通过直接调用与泛化调用ByeService的bye方法在报文上有啥区别呢?
我一开始以为报文中的path是GenericeService,其实并没有,path就是我们调用的目标方法。
path来源???todo
而报文中的方法名,方法参数类型以及具体参数,还是按照GenericeService的$invoke方法入参传递的。
这么个二合一的报文,发送到提供者那边,它估计也会很懵逼,我应该怎么执行?
所以针对泛化调用报文还会把generic=true放在attchment中传递过去
具体逻辑在GenericImplFilter中。
GenericImplFilter中有很多其他逻辑,比如泛化调用使用的序列化协议,正常接口走泛化调用的模式,我们只需要设置attachment的那部分。
知道消费者端报文发生了什么变化,那么接下来就去看提供者端如何处理这个改造后的报文。
总结一下ReferenceConfig中interfaceClass和interfaceName的区别?(这道面试题好像不错)
interfaceClass用于指定生成代理的接口
interfaceName用于指定发送rpc报文中的path(告诉服务端我要调用那个服务)
消费者泛化调用的rpc报文传递到提供者还不能直接使用,虽然path是对的,但是实际的方法名,参数类型,参数要从rpc报文的参数中提取出来。
GenericFilter就是用来做这件事情。
在提供者这边,针对泛化调用的逻辑全部封装到了GenericFilter,解耦的非常好。
注意第4个条件,一开始很疑惑,后来发现rpc报文中的path是目标接口的,这边invoker.getInterface()返回的肯定就是实际接口了
这边有个疑问,为什么这边还要再次反序列化一次,netty不是有decoder么??
嗯,你别忘了,针对一个POJO你传过来是一个Map,从Map转换为POJO需要这边进一步处理。
这边需要注意一下!!针对接口的泛化调用,抛出的异常都会经过GenericException包装一下。
从功能上来看,泛化调用提供了在没有接口依赖情况下进行的解决方案,丰富框架的使用场景。
从设计上来看,泛化调用的功能还是通过扩展的方式实现的,侵入性不强,值得学习借鉴。
Duplicate spring bean id 问题调查
问题背景 :从本地调用服务器的dubbo接口进行测试
实现思路 :基于IDEA+Spring+maven+Dubbo搭建测试项目,从本地直接调用
具体实现思路可参考博客: https://www.cnblogs.com/xiuxingzhe/p/9250737.html
碰到问题 :引入测试目标jar后,调用其接口运行测试类时,报错如下
Caused by: java.lang.IllegalStateException: Duplicate spring bean id cfgDistributorServiceImpl
at com.alibaba.dubbo.config.spring.schema.DubboBeanDefinitionParser.parse(DubboBeanDefinitionParser.java:106)
at com.alibaba.dubbo.config.spring.schema.DubboBeanDefinitionParser.parse(DubboBeanDefinitionParser.java:77)
at org.springframework.beans.factory.xml.NamespaceHandlerSupport.parse(NamespaceHandlerSupport.java:74)
at org.springframework.beans.factory.xml.BeanDefinitionParserDelegate.parseCustomElement(BeanDefinitionParserDelegate.java:1411)
at org.springframework.beans.factory.xml.BeanDefinitionParserDelegate.parseCustomElement(BeanDefinitionParserDelegate.java:1401)
at org.springframework.beans.factory.xml.DefaultBeanDefinitionDocumentReader.parseBeanDefinitions(DefaultBeanDefinitionDocumentReader.java:168)
at org.springframework.beans.factory.xml.DefaultBeanDefinitionDocumentReader.doRegisterBeanDefinitions(DefaultBeanDefinitionDocumentReader.java:138)
at org.springframework.beans.factory.xml.DefaultBeanDefinitionDocumentReader.registerBeanDefinitions(DefaultBeanDefinitionDocumentReader.java:94)
at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.registerBeanDefinitions(XmlBeanDefinitionReader.java:508)
at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.doLoadBeanDefinitions(XmlBeanDefinitionReader.java:392)
调查思路 :
1.检查项目中spring是否加载了两个一样的配置文件
spring对于id的重复,默认的处理策略是覆盖
但是dubbo的新版本对重复的id做了特殊处理,如果有重复直接抛异常,就会出现上述问题
检查结果:自己的项目中并没有重复加载配置文件
2.spring扫描项目时,不仅会扫描当前项目中dubbo消费者,新建的类等需要注册的bean
还会扫描pom.xml中引入的jar包中的带有以下注解的类:@Component,@Repository,@Service,@Controller,@RestController,@ControllerAdvice, @Configuration
所以在引入包的时候,不能引入service包,因为service层的类多包含有注解@service,需要引入的是facade接口层的jar包
检查了一下,自己引入的就是service层的jar包,至此问题找到了
com.msa.base
base-service
1.0-SNAPSHOT
修改成facade层的引入
com.msa.base
base-service-facade
1.0-SNAPSHOT
重跑测试类:调用成功
关于python 调用dubbo接口测试和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
python 调用dubbo接口测试的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、python 调用dubbo接口测试的信息别忘了在本站进行查找喔。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
暂时没有评论,来抢沙发吧~