Flask接口签名sign原理与实例代码浅析
355
2023-04-16
java实现随机森林RandomForest的示例代码
随机森林是由多棵树组成的分类或回归方法。主要思想来源于Bagging算法,Bagging技术思想主要是给定一弱分类器及训练集,让该学习算法训练多轮,每轮的训练集由原始训练集中有放回的随机抽取,大小一般跟原始训练集相当,这样依次训练多个弱分类器,最终的分类由这些弱分类器组合,对于分类问题一般采用多数投票法,对于回归问题一般采用简单平均法。随机森林在bagging的基础上,每个弱分类器都是决策树,决策树的生成过程中中,在属性的选择上增加了依一定概率选择属性,在这些属性中选择最佳属性及分割点,传统做法一般是全部属性中去选择最佳属性,这样随机森林有了样本选择的随机性,属性选择的随机性,这样一来增加了每个分类器的差异性、不稳定性及一定程度上避免每个分类器的过拟合(一般决策树有过拟合现象),由此组合分类器增加了最终的泛化能力。下面是代码的简单实现
/**
* 随机森林 回归问题
* @author ysh 1208706282
*
*/
publicvBQJwK class RandomForest {
List
List
double mFeatureRate;
int mMaxDepth;
int mMinLeaf;
Random mRandom;
/**
* 加载数据 回归树
* @param path
* @param regex
* @throws Exception
*/
public void loadData(String path,String regex) throws Exception{
mSamples = new ArrayList
BufferedReader reader = new BufferedReaderhttp://(new FileReader(path));
String line = null;
String splits[] = null;
Sample sample = null;
while(null != (line=reader.readLine())){
splits = line.split(regex);
sample = new Sample();
sample.label = Double.valueOf(splits[0]);
sample.feature = new ArrayList
for(int i=0;i sample.feature.add(new Double(splits[i+1])); } mSamples.add(sample); } reader.close(); } public void train(int iters){ mCarts = new ArrayList Cart cart = null; for(int iter=0;iter cart = new Cart(); cart.mFeatureRate = mFeatureRate; cart.mMaxDepth = mMaxDepth; cart.mMinLeaf = mMinLeaf; cart.mRandom = mRandom; List for(int i=0;i s.add(mSamples.get(cart.mRandom.nextInt(mSamples.size()))); } cart.setData(s); cart.train(); mCarts.add(cart); System.out.println("iter: "+iter); s = null; } } /** * 回归问题简单平均法 分类问题多数投票法 * @param sample * @return */ public double classify(Sample sample){ double val = 0; for(Cart cart:mCarts){ val += cart.classify(sample); } return val/mCarts.size(); } /** * @param args * @throws Exception */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub RandomForest forest = new RandomForest(); forest.loadData("F:/2016-contest/20161001/train_data_1.csv", ","); forest.mFeatureRate = 0.8; forest.mMaxDepth = 3; forest.mMinLeaf = 1; forest.mRandom = new Random(); forest.mRandom.setSeed(100); forest.train(100); List double sum = 0; for(Sample s:samples){ double val = forest.classify(s); sum += (val-s.label)*(val-s.label); System.out.println(val+" "+s.label); } System.out.println(sum/samples.size()+" "+sum); System.out.println(System.currentTimeMillis()); } }
sample.feature.add(new Double(splits[i+1]));
}
mSamples.add(sample);
}
reader.close();
}
public void train(int iters){
mCarts = new ArrayList
Cart cart = null;
for(int iter=0;iter cart = new Cart(); cart.mFeatureRate = mFeatureRate; cart.mMaxDepth = mMaxDepth; cart.mMinLeaf = mMinLeaf; cart.mRandom = mRandom; List for(int i=0;i s.add(mSamples.get(cart.mRandom.nextInt(mSamples.size()))); } cart.setData(s); cart.train(); mCarts.add(cart); System.out.println("iter: "+iter); s = null; } } /** * 回归问题简单平均法 分类问题多数投票法 * @param sample * @return */ public double classify(Sample sample){ double val = 0; for(Cart cart:mCarts){ val += cart.classify(sample); } return val/mCarts.size(); } /** * @param args * @throws Exception */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub RandomForest forest = new RandomForest(); forest.loadData("F:/2016-contest/20161001/train_data_1.csv", ","); forest.mFeatureRate = 0.8; forest.mMaxDepth = 3; forest.mMinLeaf = 1; forest.mRandom = new Random(); forest.mRandom.setSeed(100); forest.train(100); List double sum = 0; for(Sample s:samples){ double val = forest.classify(s); sum += (val-s.label)*(val-s.label); System.out.println(val+" "+s.label); } System.out.println(sum/samples.size()+" "+sum); System.out.println(System.currentTimeMillis()); } }
cart = new Cart();
cart.mFeatureRate = mFeatureRate;
cart.mMaxDepth = mMaxDepth;
cart.mMinLeaf = mMinLeaf;
cart.mRandom = mRandom;
List
for(int i=0;i s.add(mSamples.get(cart.mRandom.nextInt(mSamples.size()))); } cart.setData(s); cart.train(); mCarts.add(cart); System.out.println("iter: "+iter); s = null; } } /** * 回归问题简单平均法 分类问题多数投票法 * @param sample * @return */ public double classify(Sample sample){ double val = 0; for(Cart cart:mCarts){ val += cart.classify(sample); } return val/mCarts.size(); } /** * @param args * @throws Exception */ public static void main(String[] args) throws Exception { // TODO Auto-generated method stub RandomForest forest = new RandomForest(); forest.loadData("F:/2016-contest/20161001/train_data_1.csv", ","); forest.mFeatureRate = 0.8; forest.mMaxDepth = 3; forest.mMinLeaf = 1; forest.mRandom = new Random(); forest.mRandom.setSeed(100); forest.train(100); List double sum = 0; for(Sample s:samples){ double val = forest.classify(s); sum += (val-s.label)*(val-s.label); System.out.println(val+" "+s.label); } System.out.println(sum/samples.size()+" "+sum); System.out.println(System.currentTimeMillis()); } }
s.add(mSamples.get(cart.mRandom.nextInt(mSamples.size())));
}
cart.setData(s);
cart.train();
mCarts.add(cart);
System.out.println("iter: "+iter);
s = null;
}
}
/**
* 回归问题简单平均法 分类问题多数投票法
* @param sample
* @return
*/
public double classify(Sample sample){
double val = 0;
for(Cart cart:mCarts){
val += cart.classify(sample);
}
return val/mCarts.size();
}
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
RandomForest forest = new RandomForest();
forest.loadData("F:/2016-contest/20161001/train_data_1.csv", ",");
forest.mFeatureRate = 0.8;
forest.mMaxDepth = 3;
forest.mMinLeaf = 1;
forest.mRandom = new Random();
forest.mRandom.setSeed(100);
forest.train(100);
List
double sum = 0;
for(Sample s:samples){
double val = forest.classify(s);
sum += (val-s.label)*(val-s.label);
System.out.println(val+" "+s.label);
}
System.out.println(sum/samples.size()+" "+sum);
System.out.println(System.currentTimeMillis());
}
}
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~