多平台统一管理软件接口,如何实现多平台统一管理软件接口
231
2023-04-16
初识Java8中的Stream
lambda表达式是stream的基础,初学者建议先学习lambda表达式,//jb51.net/article/121129.htm
1.初识stream
先来一个总纲:
东西就是这么多啦,stream是java8中加入的一个非常实用的功能,最初看时以为是io中的流(其实一点关系都没有),让我们先来看一个小例子感受一下:
@Before
public void init() {
random = new Random();
stuList = new ArrayList
{
for (int i = 0; i < 100; i++) {
add(new Student("student" + i, random.nextInt(50) + 50));
}
}
};
}
public class Student {
private String name;
private Integer score;
//-----getters and setters-----
}
//1列出班上超过85分的学生姓名,并按照分数降序输出用户名字
@Test
public void test1() {
List
.filter(x->x.getScore()>85)
.sorted(Comparator.comparing(Student::getScore).reversed())
.map(Student::getName)
.collect(Collectors.toList());
System.out.println(studentList);
}
列出班上分数超过85分的学生姓名,并按照分数降序输出用户名字,在java8之前我们需要三个步骤:
1)新建一个List
2)对于新的集合newList进行排序操作
3)遍历打印newList
这三个步骤在java8中只需要两条语句,如果紧紧需要打印,不需要保存新生产list的话实际上只需要一条,是不是非常方便。
2.stream的特性
我们首先列出stream的如下三点特性,在之后我们会对照着详细说明
1.stream不存储数据
2.stream不改变源数据
3.stream的延迟执行特性
通常我们在数组或集合的基础上创建stream,stream不会专门存储数据,对stream的操作也不会影响到创建它的数组和集合,对于stream的聚合、消费或收集操作只能进行一次,再次操作会报错,如下代码:
@Test
public void test1(){
Stream
stream.forEach(System.out::println);
stream.forEach(System.out::println);
}
程序在正常完成一次打印工作后报错。
stream的操作是延迟执行的,在列出班上超过85分的学生姓名例子中,在collect方法执行之前,filter、sorted、map方法还未执行,只有当collect方法执行时才会触发之前转换操作
看如下代码:
public boolean filter(Student s) {
System.out.println("begin compare");
return s.getScore() > 85;
}
@Test
public void test() {
Stream
System.out.println("split-------------------------------------");
List
}
我们将filter中的逻辑抽象成方法,在方法中加入打印逻辑,如果stream的转换操作是延迟执行的,那么split会先打印,否则后打印,代码运行结果为
可见stream的操作是延迟执行的。
TIP:
当我们操作一个流的时候,并不会修改流底层的集合(即使集合是线程安全的),如果想要修改原有的集合,就无法定义流操作的输出。
由于stream的延迟执行特性,在聚合操作执行前修改数据源是允许的。
List
@Before
public void init() {
wordList = new ArrayList
{
add("a");
add("b");
add("c");
add("d");
add("e");
add("f");
add("g");
}
};
}
/**
* 延迟执行特性,在聚合操作之前都可以添加相应元素
*/
@Test
public void test() {
Stream
wordList.add("END");
long n = words.distinct().count();
System.out.println(n);
}
最后打印的结果是8
如下代码是错误的
/**
* 延迟执行特性,会产生干扰
* nullPointException
*/
@Test
public void test2(){
Stream
words1.forEach(s -> {
System.out.println("s->"+s);
if (s.length() < 4) {
System.out.println("select->"+s);
wordList.remove(s);
System.out.println(wordList);
}
});
}
结果报空指针异常
3.创建stream
1)通过数组创建
/**
* 通过数组创建流
*/
@Test
public void testArrayStream(){
//1.通过Arrays.stream
//1.1基本类型
int[] arr = new int[]{1,2,34,5};
IntStream intStream = Arrays.stream(arr);
//1.2引用类型
Student[] studentArr = new Student[]{new Student("s1",29),new Student("s2",27)};
Stream
//2.通过Stream.of
Stream
//注意生成的是int[]的流
Stream
stream2.forEach(System.out::println);
}
2)通过集合创建流
/**
* 通过集合创建流
*/
@Test
public void testCollectionStream(){
List
//创建普通流
Stream
//创建并行流
Stream
}
3)创建空的流
@Test
public void testEmptyStream(){
//创建一个空的stream
Stream
}
4)创建无限流
@Test
public void testUnlimitStream(){
//创建无限流,通过limit提取指定大小
Stream.generate(()->"number"+new Random().nextInt()).limit(100).forEach(System.out::println);
Stream.generate(()->new Student("name",10)).limit(20).forEach(System.out::println);
}
5)创建规律的无限流
/**
* 产生规律的数据
*/
@Test
public void testUnlimitStream1(){
Stream.iterate(0,x->x+1).limit(10).forEach(System.out::println);
Stream.iterate(0,x->x).limit(10).forEach(System.out::println);
//Stream.iterate(0,x->x).limit(10).forEach(System.out::println);与如下代码意思是一样的
Stream.iterate(0, UnaryOperator.identity()).limit(10).forEach(System.out::println);
}
4.对stream的操作
1)最常使用
map:转换流,将一种类型的流转换为另外一种流
/**
* map把一种类型的流转换为另外一种类型的流
* 将String数组中字母转换为大写
*/
@Test
public void testMap() {
String[] arr = new String[]{"yes", "YES", "no", "NO"};
Arrays.stream(arr).map(x -> x.toLowerCase()).forEach(System.out::println);
}
filter:过滤流,过滤流中的元素
@Test
public void testFilter(){
Integer[] arr = new Integer[]{1,2,3,4,5,6,7,8,9,10};
Arrays.stream(arr).filter(x->x>3&&x<8).forEach(System.out::println);
}
flapMap:拆解流,将流中每一个元素拆解成一个流
/**
* flapMap:拆解流
*/
@Test
public void testFlapMap1() {
String[] arr1 = {"a", "b", "c", "d"};
String[] arr2 = {"e", "f", "c", "d"};
String[] arr3 = {"h", "j", "c", "d"};
// Stream.of(arr1, arr2, arr3).flatMap(x -> Arrays.stream(x)).forEach(System.out::println);
Stream.of(arr1, arr2, arr3).flatMap(Arrays::stream).forEach(System.out::println);
}
sorted:对流进行排序
String[] arr1 = {"abc","a","bc","abcd"};
/**
* Comparator.comparing是一个键提取的功能
* 以下两个语句表示相同意义
*/
@Test
public void testSorted1_(){
/**
* 按照字符长度排序
*/
Arrays.stream(arr1).sorted((x,y)->{
if (x.length()>y.length())
return 1;
else if (x.length() return -1; else return 0; }).forEach(System.out::println); Arrays.stream(arr1).sorted(Comparator.comparing(String::length)).forEach(System.out::println); } /** * 倒序 * reversed(),java8泛型推导的问题,所以如果comparing里面是非方法引用的lambda表达式就没办法直接使用reversed() * Comparator.reverseOrder():也是用于翻转顺序,用于比较对象(Stream里面的类型必须是可比较的) * Comparator. naturalOrder():返回一个自然排序比较器,用于比较对象(Stream里面的类型必须是可比较的) */ @Test public void testSorted2_(){ Arrays.stream(arr1).sorted(Comparator.comparing(String::length).reversed()).forEach(System.out::println); Arrays.stream(arr1).sorted(Comparator.reverseOrder()).forEach(System.out::println); Arrays.stream(arr1).sorted(Comparator.naturalOrder()).forEach(System.out::println); } /** * thenComparing * 先按照首字母排序 * 之后按照String的长度排序 */ @Test public void testSorted3_(){ Arrays.stream(arr1).sorted(Comparator.comparing(this::com1).thenComparing(String::length)).forEach(System.out::println); } public char com1(String x){ return x.charAt(0); } 2)提取流和组合流 @Before public void init(){ arr1 = new String[]{"a","b","c","d"}; arr2 = new String[]{"d","e","f","g"}; arr3 = new String[]{"i","j","k","l"}; } /** * limit,限制从流中获得前n个数据 */ @Test public void testLimit(){ Stream.iterate(1,x->x+2).limit(10).forEach(System.out::println); } /** * skip,跳过前n个数据 */ @Test public void testSkip(){ // Stream.of(arr1).skip(2).limit(2).forEach(System.out::println); Stream.iterate(1,x->x+2).skip(1).limit(5).forEach(System.out::println); } /** * 可以把两个stream合并成一个stream(合并的stream类型必须相同) * 只能两两合并 */ @Test public void testConcat(){ Stream Stream Stream.concat(stream1,stream2).distinct().forEach(System.out::println); } 3)聚合操作 @Before public void init(){ arr = new String[]{"b","ab","abc","abcd","abcde"}; } /** * max、min * 最大最小值 */ @Test public void testMaxAndMin(){ Stream.of(arr).max(Comparator.comparing(String::length)).ifPresent(System.out::println); Stream.of(arr).min(Comparator.comparing(String::length)).ifPresent(System.out::println); } /** * count * 计算数量 */ @Test public void testCount(){ long count = Stream.of(arr).count(); System.out.println(count); } /** * findFirst * 查找第一个 */ @Test public void testFindFirst(){ String str = Stream.of(arr).parallel().filter(x->x.length()>3).findFirst().orElse("noghing"); System.out.println(str); } /** * findAny * 找到所有匹配的元素 * 对并行流十分有效 * 只要在任何片段发现了第一个匹配元素就会结束整个运算 */ @Test public void testFindAny(){ Optional optional.ifPresent(System.out::println); } /** * anyMatch * 是否含有匹配元素 */ @Test public void testAnyMatch(){ Boolean aBoolean = Stream.of(arr).anyMatch(x->x.startsWith("a")); System.out.println(aBoolean); } @Test public void testStream1() { Optional System.out.println(optional.get()); } 4)Optional类型 通常聚合操作会返回一个Optional类型,Optional表示一个安全的指定结果类型,所谓的安全指的是避免直接调用返回类型的null值而造成空指针异常,调用optional.ifPresent()可以判断返回值是否为空,或者直接调用ifPresent(Consumer super T> consumer)在结果部位空时进行消费操作;调用optional.get()获取返回值。通常的使用方式如下: @Test public void testOptional() { List { add("user1"); add("user2"); } }; Optional opt.ifPresent(list::add); list.forEach(System.out::println); } 使用Optional可以在没有值时指定一个返回值,例如 @Test public void testOptional2() { Integer[] arr = new Integer[]{4,5,6,7,8,9}; Integer result = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElse(-1); System.out.println(result); Integer result1 = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElseGet(()->-1); System.out.println(result1); Integer result2 = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElseThrow(RuntimeException::new); System.out.println(result2); } Optional的创建 采用Optional.empty()创建一个空的Optional,使用Optional.of()创建指定值的Optional。同样也可以调用Optional对象的map方法进行Optional的转换,调用flatMap方法进行Optional的迭代 @Test public void testStream1() { Optional Optional System.out.println(optionalStr.get()); } public static Optional return x == 0 ? Optional.empty() : Optional.of(1 / x); } public static Optional return x < 0 ? Optional.empty() : Optional.of(Math.sqrt(x)); } /** * Optional的迭代 */ @Test public void testStream2() { double x = 4d; Optional result1.ifPresent(System.out::println); Optional result2.ifPresent(System.out::println); } 5)收集结果 Student[] students; @Before public void init(){ students = new Student[100]; for (int i=0;i<30;i++){ Student student = new Student("user",i); students[i] = student; } for (int i=30;i<60;i++){ Student student = new Student("user"+i,i); students[i] = student; } for (int i=60;i<100;i++){ Student student = new Student("user"+i,i); students[i] = student; } } @Test public void testCollect1(){ /** * 生成List */ List list.forEach((x)-> System.out.println(x)); /** * 生成Set */ Set set.forEach((x)-> System.out.println(x)); /** * 如果包含相同的key,则需要提供第三个参数,否则报错 */ Map map.forEach((x,y)-> System.out.println(x+"->"+y)); } /** * 生成数组 */ @Test public void testCollect2(){ Student[] s = Arrays.stream(students).toArray(Student[]::new); for (int i=0;i System.out.println(s[i]); } /** * 指定生成的类型 */ @Test public void testCollect3(){ HashSet s.forEach(System.out::println); } /** * 统计 */ @Test public void testCollect4(){ IntSummaryStatistics summaryStatistics = Arrays.stream(students).collect(Collectors.summarizingInt(Student::getScore)); System.out.println("getAverage->"+summaryStatistics.getAverage()); System.out.println("getMax->"+summaryStatistics.getMax()); System.out.println("getMin->"+summaryStatistics.getMin()); System.out.println("getCount->"+summaryStatistics.getCount()); System.out.println("getSum->"+summaryStatistics.getSum()); } 6)分组和分片 分组和分片的意义是,将collect的结果集展示位Map Student[] students; @Before public void init(){ students = new Student[100]; for (int i=0;i<30;i++){ Student student = new Student("user1http://",i); students[i] = student; } for (int i=30;i<60;i++){ Student student = new Student("user2",i); students[i] = student; } for (int i=60;i<100;i++){ Student student = new Student("user3",i); students[i] = student; } } @Test public void testGroupBy1(){ Map map.forEach((x,y)-> System.out.println(x+"->"+y)); } /** * 如果只有两类,使用partitioningBy会比groupingBy更有效率 */ @Test public void testPartitioningBy(){ Map map.forEhttp://ach((x,y)-> System.out.println(x+"->"+y)); } /** * downstream指定类型 */ @Test public void testGroupBy2(){ Map map.forEach((x,y)-> System.out.println(x+"->"+y)); } /** * downstream 聚合操作 */ @Test public void testGroupBy3(){ /** * counting */ Map map1.forEach((x,y)-> System.out.println(x+"->"+y)); /** * summingInt */ Map map2.forEach((x,y)-> System.out.println(x+"->"+y)); /** * maxBy */ Map map3.forEach((x,y)-> System.out.println(x+"->"+y)); /** * mapping */ Map map4.forEach((x,y)-> System.out.println(x+"->"+y)); } 5.原始类型流 在数据量比较大的情况下,将基本数据类型(int,double...)包装成相应对象流的做法是低效的,因此,我们也可以直接将数据初始化为原始类型流,在原始类型流上的操作与对象流类似,我们只需要记住两点 1.原始类型流的初始化 2.原始类型流与流对象的转换 DoubleStream doubleStream; IntStream intStream; /** * 原始类型流的初始化 */ @Before public void testStream1(){ doubleStream = DoubleStream.of(0.1,0.2,0.3,0.8); intStream = IntStream.of(1,3,5,7,9); IntStream stream1 = IntStream.rangeClosed(0,100); IntStream stream2 = IntStream.range(0,100); } /** * 流与原始类型流的转换 */ @Test public void testStream2(){ Stream doubleStream = stream.mapToDouble(Double::new); } 6.并行流 可以将普通顺序执行的流转变为并行流,只需要调用顺序流的parallel() 方法即可,如Stream.iterate(1, x -> x + 1).limit(10).parallel()。 1) 并行流的执行顺序 我们调用peek方法来瞧瞧并行流和串行流的执行顺序,peek方法顾名思义,就是偷窥流内的数据,peek方法声明为Stream public void peek1(int x) { System.out.println(Thread.currentThread().getName() + ":->peek1->" + x); } public void peek2(int x) { System.out.println(Thread.currentThread().getName() + ":->peek2->" + x); } public void peek3(int x) { System.out.println(Thread.currentThread().getName() + ":->final result->" + x); } /** * peek,监控方法 * 串行流和并行流的执行顺序 */ @org.junit.Test public void testPeek() { Stream stream.peek(this::peek1).filter(x -> x > 5) .peek(this::peek2).filter(x -> x < 8) .peek(this::peek3) .forEach(System.out::println); } @Test public void testPeekPal() { Stream stream.peek(this::peek1).filter(x -> x > 5) .peek(this::peek2).filter(x -> x < 8) .peek(this::peek3) .forEach(System.out::println); } 串行流打印结果如下: 并行流打印结果如下: 咋看不一定能看懂,我们用如下的图来解释 我们将stream.filter(x -> x > 5).filter(x -> x < 8).forEach(System.out::println)的过程想象成上图的管道,我们在管道上加入的peek相当于一个阀门,透过这个阀门查看流经的数据, 1)当我们使用顺序流时,数据按照源数据的顺序依次通过管道,当一个数据被filter过滤,或者经过整个管道而输出后,第二个数据才会开始重复这一过程 2)当我们使用并行流时,系统除了主线程外启动了七个线程(我的电脑是4核八线程)来执行处理任务,因此执行是无序的,但同一个线程内处理的数据是按顺序进行的。 2) sorted()、distinct()等对并行流的影响 sorted()、distinct()是元素相关方法,和整体的数据是有关系的,map,filter等方法和已经通过的元素是不相关的,不需要知道流里面有哪些元素 ,并行执行和sorted会不会产生冲突呢? 结论:1.并行流和排序是不冲突的,2.一个流是否是有序的,对于一些api可能会提高执行效率,对于另一些api可能会降低执行效率 3.如果想要输出的结果是有序的,对于并行的流需要使用forEachOrdered(forEach的输出效率更高) 我们做如下实验: /** * 生成一亿条0-100之间的记录 */ @Before public void init() { Random random = new Random(); list = Stream.generate(() -> random.nextInt(100)).limit(100000000).collect(toList()); } /** * tip */ @org.junit.Test public void test1() { long begin1 = System.currentTimeMillis(); list.stream().filter(x->(x > 10)).filter(x->x<80).count(); long end1 = System.currentTimeMillis(); System.out.println(end1-begin1); list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).count(); long end2 = System.currentTimeMillis(); System.out.println(end2-end1); long begin1_ = System.currentTimeMillis(); list.stream().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count(); long end1_ = System.currentTimeMillis(); System.out.println(end1-begin1); list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count(); long end2_ = System.currentTimeMillis(); System.out.println(end2_-end1_); } 可见,对于串行流.distinct().sorted()方法对于运行时间没有影响,但是对于串行流,会使得运行时间大大增加,因此对于包含sorted、distinct()等与全局数据相关的操作,不推荐使用并行流。 7.stream vs spark rdd 最初看到stream的一个直观感受是和spark像,真的像 val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ => val x = math.random val y = math.random x*x + y*y < 1}.count()println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}") 以上代码摘自spark官网,使用的是scala语言,一个最基础的word count代码,这里我们简单介绍一下spark,spark是当今最流行的基于内存的大数据处理框架,spark中的一个核心概念是RDD(弹性分布式数据集),将分布于不同处理器上的数据抽象成rdd,rdd上http://支持两种类型的操作1) Transformation(变换)2) Action(行动),对于rdd的Transformation算子并不会立即执行,只有当使用了Action算子后,才会触发。 总结 以上所示是给大家介绍的Java8中的Stream相关知识,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,会及时回复大家的!
return -1;
else
return 0;
}).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.comparing(String::length)).forEach(System.out::println);
}
/**
* 倒序
* reversed(),java8泛型推导的问题,所以如果comparing里面是非方法引用的lambda表达式就没办法直接使用reversed()
* Comparator.reverseOrder():也是用于翻转顺序,用于比较对象(Stream里面的类型必须是可比较的)
* Comparator. naturalOrder():返回一个自然排序比较器,用于比较对象(Stream里面的类型必须是可比较的)
*/
@Test
public void testSorted2_(){
Arrays.stream(arr1).sorted(Comparator.comparing(String::length).reversed()).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.reverseOrder()).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.naturalOrder()).forEach(System.out::println);
}
/**
* thenComparing
* 先按照首字母排序
* 之后按照String的长度排序
*/
@Test
public void testSorted3_(){
Arrays.stream(arr1).sorted(Comparator.comparing(this::com1).thenComparing(String::length)).forEach(System.out::println);
}
public char com1(String x){
return x.charAt(0);
}
2)提取流和组合流
@Before
public void init(){
arr1 = new String[]{"a","b","c","d"};
arr2 = new String[]{"d","e","f","g"};
arr3 = new String[]{"i","j","k","l"};
}
/**
* limit,限制从流中获得前n个数据
*/
@Test
public void testLimit(){
Stream.iterate(1,x->x+2).limit(10).forEach(System.out::println);
}
/**
* skip,跳过前n个数据
*/
@Test
public void testSkip(){
// Stream.of(arr1).skip(2).limit(2).forEach(System.out::println);
Stream.iterate(1,x->x+2).skip(1).limit(5).forEach(System.out::println);
}
/**
* 可以把两个stream合并成一个stream(合并的stream类型必须相同)
* 只能两两合并
*/
@Test
public void testConcat(){
Stream
Stream
Stream.concat(stream1,stream2).distinct().forEach(System.out::println);
}
3)聚合操作
@Before
public void init(){
arr = new String[]{"b","ab","abc","abcd","abcde"};
}
/**
* max、min
* 最大最小值
*/
@Test
public void testMaxAndMin(){
Stream.of(arr).max(Comparator.comparing(String::length)).ifPresent(System.out::println);
Stream.of(arr).min(Comparator.comparing(String::length)).ifPresent(System.out::println);
}
/**
* count
* 计算数量
*/
@Test
public void testCount(){
long count = Stream.of(arr).count();
System.out.println(count);
}
/**
* findFirst
* 查找第一个
*/
@Test
public void testFindFirst(){
String str = Stream.of(arr).parallel().filter(x->x.length()>3).findFirst().orElse("noghing");
System.out.println(str);
}
/**
* findAny
* 找到所有匹配的元素
* 对并行流十分有效
* 只要在任何片段发现了第一个匹配元素就会结束整个运算
*/
@Test
public void testFindAny(){
Optional
optional.ifPresent(System.out::println);
}
/**
* anyMatch
* 是否含有匹配元素
*/
@Test
public void testAnyMatch(){
Boolean aBoolean = Stream.of(arr).anyMatch(x->x.startsWith("a"));
System.out.println(aBoolean);
}
@Test
public void testStream1() {
Optional
System.out.println(optional.get());
}
4)Optional类型
通常聚合操作会返回一个Optional类型,Optional表示一个安全的指定结果类型,所谓的安全指的是避免直接调用返回类型的null值而造成空指针异常,调用optional.ifPresent()可以判断返回值是否为空,或者直接调用ifPresent(Consumer super T> consumer)在结果部位空时进行消费操作;调用optional.get()获取返回值。通常的使用方式如下:
@Test
public void testOptional() {
List
{
add("user1");
add("user2");
}
};
Optional
opt.ifPresent(list::add);
list.forEach(System.out::println);
}
使用Optional可以在没有值时指定一个返回值,例如
@Test
public void testOptional2() {
Integer[] arr = new Integer[]{4,5,6,7,8,9};
Integer result = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElse(-1);
System.out.println(result);
Integer result1 = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElseGet(()->-1);
System.out.println(result1);
Integer result2 = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElseThrow(RuntimeException::new);
System.out.println(result2);
}
Optional的创建
采用Optional.empty()创建一个空的Optional,使用Optional.of()创建指定值的Optional。同样也可以调用Optional对象的map方法进行Optional的转换,调用flatMap方法进行Optional的迭代
@Test
public void testStream1() {
Optional
Optional
System.out.println(optionalStr.get());
}
public static Optional
return x == 0 ? Optional.empty() : Optional.of(1 / x);
}
public static Optional
return x < 0 ? Optional.empty() : Optional.of(Math.sqrt(x));
}
/**
* Optional的迭代
*/
@Test
public void testStream2() {
double x = 4d;
Optional
result1.ifPresent(System.out::println);
Optional
result2.ifPresent(System.out::println);
}
5)收集结果
Student[] students;
@Before
public void init(){
students = new Student[100];
for (int i=0;i<30;i++){
Student student = new Student("user",i);
students[i] = student;
}
for (int i=30;i<60;i++){
Student student = new Student("user"+i,i);
students[i] = student;
}
for (int i=60;i<100;i++){
Student student = new Student("user"+i,i);
students[i] = student;
}
}
@Test
public void testCollect1(){
/**
* 生成List
*/
List
list.forEach((x)-> System.out.println(x));
/**
* 生成Set
*/
Set
set.forEach((x)-> System.out.println(x));
/**
* 如果包含相同的key,则需要提供第三个参数,否则报错
*/
Map
map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
* 生成数组
*/
@Test
public void testCollect2(){
Student[] s = Arrays.stream(students).toArray(Student[]::new);
for (int i=0;i System.out.println(s[i]); } /** * 指定生成的类型 */ @Test public void testCollect3(){ HashSet s.forEach(System.out::println); } /** * 统计 */ @Test public void testCollect4(){ IntSummaryStatistics summaryStatistics = Arrays.stream(students).collect(Collectors.summarizingInt(Student::getScore)); System.out.println("getAverage->"+summaryStatistics.getAverage()); System.out.println("getMax->"+summaryStatistics.getMax()); System.out.println("getMin->"+summaryStatistics.getMin()); System.out.println("getCount->"+summaryStatistics.getCount()); System.out.println("getSum->"+summaryStatistics.getSum()); } 6)分组和分片 分组和分片的意义是,将collect的结果集展示位Map Student[] students; @Before public void init(){ students = new Student[100]; for (int i=0;i<30;i++){ Student student = new Student("user1http://",i); students[i] = student; } for (int i=30;i<60;i++){ Student student = new Student("user2",i); students[i] = student; } for (int i=60;i<100;i++){ Student student = new Student("user3",i); students[i] = student; } } @Test public void testGroupBy1(){ Map map.forEach((x,y)-> System.out.println(x+"->"+y)); } /** * 如果只有两类,使用partitioningBy会比groupingBy更有效率 */ @Test public void testPartitioningBy(){ Map map.forEhttp://ach((x,y)-> System.out.println(x+"->"+y)); } /** * downstream指定类型 */ @Test public void testGroupBy2(){ Map map.forEach((x,y)-> System.out.println(x+"->"+y)); } /** * downstream 聚合操作 */ @Test public void testGroupBy3(){ /** * counting */ Map map1.forEach((x,y)-> System.out.println(x+"->"+y)); /** * summingInt */ Map map2.forEach((x,y)-> System.out.println(x+"->"+y)); /** * maxBy */ Map map3.forEach((x,y)-> System.out.println(x+"->"+y)); /** * mapping */ Map map4.forEach((x,y)-> System.out.println(x+"->"+y)); } 5.原始类型流 在数据量比较大的情况下,将基本数据类型(int,double...)包装成相应对象流的做法是低效的,因此,我们也可以直接将数据初始化为原始类型流,在原始类型流上的操作与对象流类似,我们只需要记住两点 1.原始类型流的初始化 2.原始类型流与流对象的转换 DoubleStream doubleStream; IntStream intStream; /** * 原始类型流的初始化 */ @Before public void testStream1(){ doubleStream = DoubleStream.of(0.1,0.2,0.3,0.8); intStream = IntStream.of(1,3,5,7,9); IntStream stream1 = IntStream.rangeClosed(0,100); IntStream stream2 = IntStream.range(0,100); } /** * 流与原始类型流的转换 */ @Test public void testStream2(){ Stream doubleStream = stream.mapToDouble(Double::new); } 6.并行流 可以将普通顺序执行的流转变为并行流,只需要调用顺序流的parallel() 方法即可,如Stream.iterate(1, x -> x + 1).limit(10).parallel()。 1) 并行流的执行顺序 我们调用peek方法来瞧瞧并行流和串行流的执行顺序,peek方法顾名思义,就是偷窥流内的数据,peek方法声明为Stream public void peek1(int x) { System.out.println(Thread.currentThread().getName() + ":->peek1->" + x); } public void peek2(int x) { System.out.println(Thread.currentThread().getName() + ":->peek2->" + x); } public void peek3(int x) { System.out.println(Thread.currentThread().getName() + ":->final result->" + x); } /** * peek,监控方法 * 串行流和并行流的执行顺序 */ @org.junit.Test public void testPeek() { Stream stream.peek(this::peek1).filter(x -> x > 5) .peek(this::peek2).filter(x -> x < 8) .peek(this::peek3) .forEach(System.out::println); } @Test public void testPeekPal() { Stream stream.peek(this::peek1).filter(x -> x > 5) .peek(this::peek2).filter(x -> x < 8) .peek(this::peek3) .forEach(System.out::println); } 串行流打印结果如下: 并行流打印结果如下: 咋看不一定能看懂,我们用如下的图来解释 我们将stream.filter(x -> x > 5).filter(x -> x < 8).forEach(System.out::println)的过程想象成上图的管道,我们在管道上加入的peek相当于一个阀门,透过这个阀门查看流经的数据, 1)当我们使用顺序流时,数据按照源数据的顺序依次通过管道,当一个数据被filter过滤,或者经过整个管道而输出后,第二个数据才会开始重复这一过程 2)当我们使用并行流时,系统除了主线程外启动了七个线程(我的电脑是4核八线程)来执行处理任务,因此执行是无序的,但同一个线程内处理的数据是按顺序进行的。 2) sorted()、distinct()等对并行流的影响 sorted()、distinct()是元素相关方法,和整体的数据是有关系的,map,filter等方法和已经通过的元素是不相关的,不需要知道流里面有哪些元素 ,并行执行和sorted会不会产生冲突呢? 结论:1.并行流和排序是不冲突的,2.一个流是否是有序的,对于一些api可能会提高执行效率,对于另一些api可能会降低执行效率 3.如果想要输出的结果是有序的,对于并行的流需要使用forEachOrdered(forEach的输出效率更高) 我们做如下实验: /** * 生成一亿条0-100之间的记录 */ @Before public void init() { Random random = new Random(); list = Stream.generate(() -> random.nextInt(100)).limit(100000000).collect(toList()); } /** * tip */ @org.junit.Test public void test1() { long begin1 = System.currentTimeMillis(); list.stream().filter(x->(x > 10)).filter(x->x<80).count(); long end1 = System.currentTimeMillis(); System.out.println(end1-begin1); list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).count(); long end2 = System.currentTimeMillis(); System.out.println(end2-end1); long begin1_ = System.currentTimeMillis(); list.stream().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count(); long end1_ = System.currentTimeMillis(); System.out.println(end1-begin1); list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count(); long end2_ = System.currentTimeMillis(); System.out.println(end2_-end1_); } 可见,对于串行流.distinct().sorted()方法对于运行时间没有影响,但是对于串行流,会使得运行时间大大增加,因此对于包含sorted、distinct()等与全局数据相关的操作,不推荐使用并行流。 7.stream vs spark rdd 最初看到stream的一个直观感受是和spark像,真的像 val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ => val x = math.random val y = math.random x*x + y*y < 1}.count()println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}") 以上代码摘自spark官网,使用的是scala语言,一个最基础的word count代码,这里我们简单介绍一下spark,spark是当今最流行的基于内存的大数据处理框架,spark中的一个核心概念是RDD(弹性分布式数据集),将分布于不同处理器上的数据抽象成rdd,rdd上http://支持两种类型的操作1) Transformation(变换)2) Action(行动),对于rdd的Transformation算子并不会立即执行,只有当使用了Action算子后,才会触发。 总结 以上所示是给大家介绍的Java8中的Stream相关知识,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,会及时回复大家的!
System.out.println(s[i]);
}
/**
* 指定生成的类型
*/
@Test
public void testCollect3(){
HashSet
s.forEach(System.out::println);
}
/**
* 统计
*/
@Test
public void testCollect4(){
IntSummaryStatistics summaryStatistics = Arrays.stream(students).collect(Collectors.summarizingInt(Student::getScore));
System.out.println("getAverage->"+summaryStatistics.getAverage());
System.out.println("getMax->"+summaryStatistics.getMax());
System.out.println("getMin->"+summaryStatistics.getMin());
System.out.println("getCount->"+summaryStatistics.getCount());
System.out.println("getSum->"+summaryStatistics.getSum());
}
6)分组和分片
分组和分片的意义是,将collect的结果集展示位Map
Student[] students;
@Before
public void init(){
students = new Student[100];
for (int i=0;i<30;i++){
Student student = new Student("user1http://",i);
students[i] = student;
}
for (int i=30;i<60;i++){
Student student = new Student("user2",i);
students[i] = student;
}
for (int i=60;i<100;i++){
Student student = new Student("user3",i);
students[i] = student;
}
}
@Test
public void testGroupBy1(){
Map
map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
* 如果只有两类,使用partitioningBy会比groupingBy更有效率
*/
@Test
public void testPartitioningBy(){
Map
map.forEhttp://ach((x,y)-> System.out.println(x+"->"+y));
}
/**
* downstream指定类型
*/
@Test
public void testGroupBy2(){
Map
map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
* downstream 聚合操作
*/
@Test
public void testGroupBy3(){
/**
* counting
*/
Map
map1.forEach((x,y)-> System.out.println(x+"->"+y));
/**
* summingInt
*/
Map
map2.forEach((x,y)-> System.out.println(x+"->"+y));
/**
* maxBy
*/
Map
map3.forEach((x,y)-> System.out.println(x+"->"+y));
/**
* mapping
*/
Map
map4.forEach((x,y)-> System.out.println(x+"->"+y));
}
5.原始类型流
在数据量比较大的情况下,将基本数据类型(int,double...)包装成相应对象流的做法是低效的,因此,我们也可以直接将数据初始化为原始类型流,在原始类型流上的操作与对象流类似,我们只需要记住两点
1.原始类型流的初始化
2.原始类型流与流对象的转换
DoubleStream doubleStream;
IntStream intStream;
/**
* 原始类型流的初始化
*/
@Before
public void testStream1(){
doubleStream = DoubleStream.of(0.1,0.2,0.3,0.8);
intStream = IntStream.of(1,3,5,7,9);
IntStream stream1 = IntStream.rangeClosed(0,100);
IntStream stream2 = IntStream.range(0,100);
}
/**
* 流与原始类型流的转换
*/
@Test
public void testStream2(){
Stream
doubleStream = stream.mapToDouble(Double::new);
}
6.并行流
可以将普通顺序执行的流转变为并行流,只需要调用顺序流的parallel() 方法即可,如Stream.iterate(1, x -> x + 1).limit(10).parallel()。
1) 并行流的执行顺序
我们调用peek方法来瞧瞧并行流和串行流的执行顺序,peek方法顾名思义,就是偷窥流内的数据,peek方法声明为Stream
public void peek1(int x) {
System.out.println(Thread.currentThread().getName() + ":->peek1->" + x);
}
public void peek2(int x) {
System.out.println(Thread.currentThread().getName() + ":->peek2->" + x);
}
public void peek3(int x) {
System.out.println(Thread.currentThread().getName() + ":->final result->" + x);
}
/**
* peek,监控方法
* 串行流和并行流的执行顺序
*/
@org.junit.Test
public void testPeek() {
Stream
stream.peek(this::peek1).filter(x -> x > 5)
.peek(this::peek2).filter(x -> x < 8)
.peek(this::peek3)
.forEach(System.out::println);
}
@Test
public void testPeekPal() {
Stream
stream.peek(this::peek1).filter(x -> x > 5)
.peek(this::peek2).filter(x -> x < 8)
.peek(this::peek3)
.forEach(System.out::println);
}
串行流打印结果如下:
并行流打印结果如下:
咋看不一定能看懂,我们用如下的图来解释
我们将stream.filter(x -> x > 5).filter(x -> x < 8).forEach(System.out::println)的过程想象成上图的管道,我们在管道上加入的peek相当于一个阀门,透过这个阀门查看流经的数据,
1)当我们使用顺序流时,数据按照源数据的顺序依次通过管道,当一个数据被filter过滤,或者经过整个管道而输出后,第二个数据才会开始重复这一过程
2)当我们使用并行流时,系统除了主线程外启动了七个线程(我的电脑是4核八线程)来执行处理任务,因此执行是无序的,但同一个线程内处理的数据是按顺序进行的。
2) sorted()、distinct()等对并行流的影响
sorted()、distinct()是元素相关方法,和整体的数据是有关系的,map,filter等方法和已经通过的元素是不相关的,不需要知道流里面有哪些元素 ,并行执行和sorted会不会产生冲突呢?
结论:1.并行流和排序是不冲突的,2.一个流是否是有序的,对于一些api可能会提高执行效率,对于另一些api可能会降低执行效率
3.如果想要输出的结果是有序的,对于并行的流需要使用forEachOrdered(forEach的输出效率更高)
我们做如下实验:
/**
* 生成一亿条0-100之间的记录
*/
@Before
public void init() {
Random random = new Random();
list = Stream.generate(() -> random.nextInt(100)).limit(100000000).collect(toList());
}
/**
* tip
*/
@org.junit.Test
public void test1() {
long begin1 = System.currentTimeMillis();
list.stream().filter(x->(x > 10)).filter(x->x<80).count();
long end1 = System.currentTimeMillis();
System.out.println(end1-begin1);
list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).count();
long end2 = System.currentTimeMillis();
System.out.println(end2-end1);
long begin1_ = System.currentTimeMillis();
list.stream().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count();
long end1_ = System.currentTimeMillis();
System.out.println(end1-begin1);
list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count();
long end2_ = System.currentTimeMillis();
System.out.println(end2_-end1_);
}
可见,对于串行流.distinct().sorted()方法对于运行时间没有影响,但是对于串行流,会使得运行时间大大增加,因此对于包含sorted、distinct()等与全局数据相关的操作,不推荐使用并行流。
7.stream vs spark rdd
最初看到stream的一个直观感受是和spark像,真的像
val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ =>
val x = math.random
val y = math.random
x*x + y*y < 1}.count()println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}")
以上代码摘自spark官网,使用的是scala语言,一个最基础的word count代码,这里我们简单介绍一下spark,spark是当今最流行的基于内存的大数据处理框架,spark中的一个核心概念是RDD(弹性分布式数据集),将分布于不同处理器上的数据抽象成rdd,rdd上http://支持两种类型的操作1) Transformation(变换)2) Action(行动),对于rdd的Transformation算子并不会立即执行,只有当使用了Action算子后,才会触发。
总结
以上所示是给大家介绍的Java8中的Stream相关知识,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,会及时回复大家的!
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~