本篇文章给大家谈谈dubbo接口mock测试,以及dubbo接口怎么测对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
今天给各位分享dubbo接口mock测试的知识,其中也会对dubbo接口怎么测进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
Dubbo——Mock 机制
Mock 机制是 RPC 框架中非常常见、也非常有用的功能,不仅可以用来实现服务降级,还可以用来在测试中模拟调用的各种异常情况。Dubbo 中的 Mock 机制是在 Consumer 这一端实现的,具体来说就是在 Cluster 这一层实现的。
在前面深入介绍了 Dubbo 提供的多种 Cluster 实现以及相关的 Cluster Invoker 实现,其中的 ZoneAwareClusterInvoker 就涉及了 MockClusterInvoker 的相关内容。本文我们就来介绍 Dubbo 中 Mock 机制的全链路流程,不仅包括与 Cluster 接口相关的 MockClusterWrapper 和 MockClusterInvoker,还会回顾之前的 Router 和 Protocol 接口,分析它们与 Mock 机制相关的实现。
Cluster 接口有两条继承线(如下图所示):一条线是 AbstractCluster 抽象类,这条继承线涉及的全部 Cluster 实现类;另一条线是 MockClusterWrapper 这条线。
MockClusterWrapper 是 Cluster 对象的包装类,在之前介绍 Dubbo SPI 机制时已经分析过 Wrapper 的功能,MockClusterWrapper 类会对 Cluster 进行包装。下面是 MockClusterWrapper 的具体实现,其中会在 Cluster Invoker 对象的基础上使用 MockClusterInvoker 进行包装:
MockClusterInvoker 是 Dubbo Mock 机制的核心,它主要是通过 invoke()、doMockInvoke() 和 selectMockInvoker() 这三个核心方法来实现 Mock 机制的。
下面就来逐个介绍这三个方法的具体实现。
首先来看 MockClusterInvoker 的 invoke() 方法,它会先判断是否需要开启 Mock 机制。如果在 mock 参数中配置的是 force 模式,则会直接调用 doMockInvoke() 方法进行 mock。如果在 mock 参数中配置的是 fail 模式,则会正常调用 Invoker 发起请求,在请求失败的时候,会调动 doMockInvoke() 方法进行 mock。下面是 MockClusterInvoker 的 invoke() 方法的具体实现:
在 doMockInvoke() 方法中,首先调用 selectMockInvoker() 方法获取 MockInvoker 对象,并调用其 invoke() 方法进行 mock 操作。doMockInvoke() 方法的具体实现如下:
selectMockInvoker() 方法中并没有进行 MockInvoker 的选择或是创建,它仅仅是将 Invocation 附属信息中的 invocation.need.mock 属性设置为 true,然后交给 Directory 中的 Router 集合进行处理。selectMockInvoker() 方法的具体实现如下:
MockInvokersSelector 是 Dubbo Mock 机制相关的 Router 实现,在未开启 Mock 机制的时候,会返回正常的 Invoker 对象集合;在开启 Mock 机制之后,会返回 MockInvoker 对象集合。MockInvokersSelector 的具体实现如下:
在 getMockedInvokers() 方法中,会根据 URL 的 Protocol 进行过滤,只返回 Protocol 为 mock 的 Invoker 对象,而 getNormalInvokers() 方法只会返回 Protocol 不为 mock 的 Invoker 对象。
介绍完 Mock 功能在 Cluster 层的相关实现之后,还要来看一下 Dubbo 在 RPC 层对 Mock 机制的支持,这里涉及 MockProtocol 和 MockInvoker 两个类。
首先来看 MockProtocol,它是 Protocol 接口的扩展实现,扩展名称为 mock。MockProtocol 只能通过 refer() 方法创建 MockInvoker,不能通过 export() 方法暴露服务,具体实现如下:
下面再来看 MockInvoker 是如何解析各类 mock 配置的,以及如何根据不同 mock 配置进行不同处理的。这里重点来看 MockInvoker.invoke() 方法,其中针对 mock 参数进行的分类处理具体有下面三条分支:
MockInvoker.invoke() 方法的具体实现如下所示:
针对 return 和 throw 的处理逻辑比较简单,但 getInvoker() 方法略微复杂些,其中会处理 MOCK_MAP 缓存的读写、Mock 实现类的查找、生成和调用 Invoker,具体实现如下:
在 getMockObject() 方法中会检查 mockService 参数是否为 true 或 default,如果是的话,则在服务接口后添加 Mock 字符串,作为服务接口的 Mock 实现;如果不是的话,则直接将 mockService 实现作为服务接口的 Mock 实现。getMockObject() 方法的具体实现如下:
本文重点介绍了 Dubbo 中 Mock 机制涉及的全部内容:
关于jmeter测试dubbo接口方式
本文章介绍如何使用jmeter测试dubbo接口,涉及如下两种方式
1.使用官方dubbo版本包测试dubbo接口
2.通过自己编写java请求插件,实现dubbo调用
选择方式1或方式2并没有什么区别,取决于部分自研公司对dubbo进行
dubbo接口mock测试了封装,导致官方提供的dubbo包并不适用于方式1,则可以通过方式2去调用
https://github.com/ningyu1/jmeter-plugins-dubbo/releases
解压tar将获取到的jar包放入${JMETER_HOME}\lib\ext路径下(这里获取到的jar包为jmeter-plugins-dubbo-2.7.1-jar-with-dependencies)
dubbo接口mock测试,重启jmeter应用(这里重启完应用会添加取样器会多出一个dubbo sample)
右键添加,选择线程-线程组
2.光标对准线程组右键添加-取样器-dubbo sample
此处需要关注,当方法接收的是一个String,或者List等类型的参数,可参照截图配置
那么当方法接收的参数是一个对象时,需要获取对接接口的api jar包并关联到当前测试计划
选中测试计划,点击下方浏览按钮,选择对应的jar包
传参的具体方式可参照如下
接口1返回:
接口2返回
看了下网上的大多请求都是单接口请求dubbo,这样就会导致,每次有新的接口的时候都得去更新新的请求,这里提供一个一劳永逸的方法,通过泛化调用,实现一个jar请求可适配所有接口,一般看到这个文章的可能大多都是测试的同学,对于当前方法需要对java有一定的基础,所以这个时候就体验到学习的重要性了,下面开始操作吧
file-new-project,选择maven
输入组织-坐标后点击next
按需配置名称路径后点击finsh
pom.xml配置如下
实现方式如下
打包操作
左侧窗口为生成的jar包和lib目录
这里要说明下,网上提供了一种方式,通过修改安装目录bin下jmeter.properties文件关联lib下的依赖
文件中增加如下(通过尝试,这么做会导致jmeter启动由于jar包加载顺序的问题,ui部分控件不可用)
这里我使用的是另一种更为简便的方式
将原安装目录lib下ext修改为extbak
新建ext,并将工程lib下的jar包和dobbo-jmeter-interface-1.0-SNAPSHOT.jar放入之
由于可能会用到随机函数,从extbak获取ApacheJMeter_functions.jar,也放入到新建的ext目录下
重启jmeter,稍等片刻
添加java请求
添加结果树
点击运行后,结果树信息如下
后续可自行配置断言和随机参数等
Dubbo高性能网关--Flurry介绍
从架构的角度来看,API网关暴露http接口服务,其本身不涉及业务逻辑,只负责包括请求路由、负载均衡、权限验证、流量控制、缓存等等功能。其定位类似于Nginx请求转发、但功能要多于Nginx,背后连接了成百上千个后台服务,这些服务协议可能是rest的,也可能是rpc协议等等。
网关的定位决定了它生来就需要高性能、高效率的。网关对接着成百上千的服务接口,承受者高并发的业务需求,因此我们对其性能要求严苛,其基本功能如下:
Flurry是云集自研的一款轻量级、异步流式化、针对Dubbo的高性能API网关。与业界大多数网关不同的是,flurry自己实现了 http与dubbo协议互转的流式化的dubbo-json协议,可高性能、低内存要求的对http和dubbo协议进行转换。除此之外,其基于 netty作为服务容器,提供服务元数据模型等等都是非常具有特点的。下面我们将详细介绍 flurry的特性:
Flurry 网关请求响应基于Netty线程模型,后者是实现了Reactive,反应式模式规范的,其设计就是来榨干CPU的,可以大幅提升单机请求响应的处理能力。
最终,Flurry通过使用Netty线程模型和NIO通讯协议实现了HTTP请求和响应的异步化。
每一次http请求最终都会由Netty的一个Client Handler来处理,其最终以异步模式请求后台服务,并返回一个CompletableFuture,当有结果返回时才会将结果返回给前端。
见下面一段例子:
有了服务元数据,我们就可以不必需要服务的API包,并能够清晰的知道整个服务API的定义。
这在Dubbo服务Mock调用、服务测试、文档站点、流式调用等等场景下都可以发挥抢到的作用。
小孩子才分对错,成年人只看利弊。额外引入一个元数据生成机制,必然带来运维成本、理解成本、迁移成本等问题,那么它具备怎样的价值,来说服大家选择它呢?上面我们介绍元数据中心时已经提到了服务测试、服务 MOCK 等场景,这一节我们重点探讨一下元数据中心的价值和使用场景。
那么,Dubbo服务元数据能够利用到哪些场景呢?下面我们来详细描述。
Http请求,数据通过JSON传输,其格式严格按照接口POJO属性。返回结果再序列化为Json返回前端。现在大多数开源的网关,在dubbo协议适配上都是采用的泛化模式来做到协议转换的,这其中就包括 Soul 等。
JsonString - JSONObject(Map) - Binary
将JSON 字符串转换为 JSON 对象模型(JSONObject),此处通过第三方JSON映射框架(如Google的Gson, 阿里的FastJSON等)来做,然后将Map通过Hessian2 协议序列化为Binaray。
自定义的Dubbo-Json协议参考了 dapeng-soa 的流式解析协议的思想,详情请参考: dapeng-json
针对上述泛化模式转换Dubbo协议的缺点,我们在flurry-core 中的 Dubbo-Json 序列化协议做到了这点,下面我们来讲解它是如何高效率的完成JsonString到 dubbo hessian2 序列化buffer的转换的。
虽然大部分情况下的JSON请求、返回都是数据量较小的场景, 但作为平台框架, 也需要应对更大的JSON请求和返回, 比如1M、甚至10M. 在这些场景下, 如果需要占用大量的内存, 那么势必导致巨大的内存需求, 同时引发频繁的GC操作, 也会联动影响到整个网关的性能.
Dubbo-Json参考了XML SAX API的设计思想, 创造性的引入了JSON Stream API, 采用流式的处理模式, 实现JSON 对 hessian2 的双向转换, 无论数据包有多大, 都可以在一定固定的内存规模内完成.
流式协议,顾名思义就是边读取边解析,数据像水流一样在管道中流动,边流动边解析,最后,数据解析完成时,转换成的hessian协议也已全部写入到了buffer中。
这里处理的核心思想就是实现自己的Json to hessian2 buffer 的语法和此法解析器,并配合前文提及的元数据功能,对每一个读取到的json片段通过元数据获取到其类型,并使用 hessian2协议以具体的方式写入到buffer中。
首先我们来看看JSON的结构. 一个典型的JSON结构体如下
其对应Java POJO 自然就是上述三个属性,这里我们略过。下面是POJO生成的元数据信息
相比XML而言,JSON数据类型比较简单, 由 Object/Array/Value/String/Boolean/Number 等元素组成, 每种元素都由特定的字符开和结束. 例如Object以'{'以及'}'这两个字符标志开始以及结束, 而Array是'['以及']'. 简单的结构使得JSON比较容易组装以及解析。
如图,我们可以清晰的了解JSON的结构,那么对上述JSON进行解析时,当每一次解析到一个基本类型时,先解析到key,然后根据key到元数据信息中获取到其value类型,然后直接根据对应类型的hessian2序列化器将其序列化到byte buffer中。
当解析到引用类型,即 Struct类型时,我们将其压入栈顶,就和java方法调用压栈操作类似。
通过上面的步骤一步一步,每解析一步Json,就将其写入到byte buffer中,最终完成整个流式的解析过程。
拿上面json为例:
总结:
上述整个请求和响应,网关处理如下:
请求和响应中没有像泛化模式中的中间对象转换,直接一步到位,没有多余的临时对象占用内存,没有多余的数据转换,整个过程像在管道中流式的进行。
如上图所示,flurry dubbo网关不必依赖任何dubbo接口API包,而是直接通过获取服务元数据、并通过dubbo-json流式协议来调用后端服务。其本身不会耦合业务逻辑。
硬件部署与参数调整
对基于Y-Hessian的 异步化、流式转换的Yunji Dubbo API网关进行性能压测,了解它的处理能力极限是多少,这样有便于我们推断其上线后的处理能力,以及对照现有的Tomcat接入层模式的优势,能够节约多少资源,做到心里有数。
性能测试场景
上述场景均使用wrk在压测节点上进行5~10min钟的压测,压测参数基本为12线程256连接或者512连接,以发挥最大的压测性能。
flurry集Dubbo网关、异步、流式、高性能于一身,其目标就是替代一些以tomcat作为dubbo消费者的接入层,以更少的节点获得更多的性能提升,节约硬件资源和软件资源。
后续在flurry的基础上,将实现鉴权管理、流量控制、限流熔断、监控收集等等功能
Flurry : 基于Dubbo服务的高性能、异步、流式网关
dubbo-json : 自定义的Dubbo协议,支持流式序列化模式,为flurry网关序列化/反序列化组件。
Yunji-doc-site : 与元数据集成相关的项目,以及文档站点
dapeng-soa : Dapeng-soa 是一个轻量级、高性能的微服务框架,构建在Netty以及定制的精简版Thrift之上。 同时,从Thrift IDL文件自动生成的服务元数据信息是本框架的一个重要特性,很多其它重要特性都依赖于服务元数据信息。 最后,作为一站式的微服务解决方案,Dapeng-soa还提供了一系列的脚手架工具以支持用户快速的搭建微服务系统
dapeng-json :dapeng-json协议介绍
看一下“Dubbo 2.7”的三大新特性
如果
dubbo接口mock测试你不想将接口的返回值定义为Future类型
dubbo接口mock测试,或者存在定义好的同步类型接口
dubbo接口mock测试,则可以额外定义一个异步接口并提供Future类型的方法。
如果
dubbo接口mock测试你的原始接口定义不是Future类型的返回值,Provider端异步也提供了类似Servlet3.0里的Async Servlet的编程接口: RpcContext.startAsync()
异步过滤器链回调。
从本地的 zookeeper 中取出一条服务数据,通过解码之后,可以看出,的确有很多参数是不必要。
在 2.7 中,如果不进行额外的配置,zookeeper 中的数据格式仍然会和 Dubbo 2.6 保持一致,这主要是为了保证兼容性,让 Dubbo 2.6 的客户端可以调用 Dubbo 2.7 的服务端。如果整体迁移到 2.7,则可以为注册中心开启简化配置的参数
dubbo接口mock测试:
Dubbo 将会只上传那些必要的服务治理数据,一个简化过后的数据如下所示:
元数据中心的数据可以被用于服务测试,服务 MOCK 等功能。目前注册中心配置中 simplified 的默认值为 false,因为考虑到了迁移的兼容问题,在后续迭代中,默认值将会改为 true。
引入配置中心后,需要注意配置项的覆盖问题。
API网关从入门到放弃
假设你正在开发一个电商网站,那么这里会涉及到很多后端的微服务,比如会员、商品、推荐服务等等。
那么这里就会遇到一个问题,APP/Browser怎么去访问这些后端的服务? 如果业务比较简单的话,可以给每个业务都分配一个独立的域名(https://service.api.company.com),但这种方式会有几个问题:
更好的方式是采用API网关,实现一个API网关接管所有的入口流量,类似Nginx的作用,将所有用户的请求转发给后端的服务器,但网关做的不仅仅只是简单的转发,也会针对流量做一些扩展,比如鉴权、限流、权限、熔断、协议转换、错误码统一、缓存、日志、监控、告警等,这样将通用的逻辑抽出来,由网关统一去做,业务方也能够更专注于业务逻辑,提升迭代的效率。
通过引入API网关,客户端只需要与API网关交互,而不用与各个业务方的接口分别通讯,但多引入一个组件就多引入了一个潜在的故障点,因此要实现一个高性能、稳定的网关,也会涉及到很多点。
API 注册
业务方如何接入网关?一般来说有几种方式。
协议转换
内部的API可能是由很多种不同的协议实现的,比如HTTP、Dubbo、GRPC等,但对于用户来说其中很多都不是很友好,或者根本没法对外暴露,比如Dubbo服务,因此需要在网关层做一次协议转换,将用户的HTTP协议请求,在网关层转换成底层对应的协议,比如HTTP - Dubbo, 但这里需要注意很多问题,比如参数类型,如果类型搞错了,导致转换出问题,而日志又不够详细的话,问题会很难定位。
服务发现
网关作为流量的入口,负责请求的转发,但首先需要知道转发给谁,如何寻址,这里有几种方式:
服务调用
网关由于对接很多种不同的协议,因此可能需要实现很多种调用方式,比如HTTP、Dubbo等,基于性能原因,最好都采用异步的方式,而Http、Dubbo都是支持异步的,比如apache就提供了基于NIO实现的异步HTTP客户端。
因为网关会涉及到很多异步调用,比如拦截器、HTTP客户端、dubbo、redis等,因此需要考虑下异步调用的方式,如果基于回调或者future的话,代码嵌套会很深,可读性很差,可以参考zuul和spring cloud gateway的方案,基于响应式进行改造。
优雅下线
性能
网关作为所有流量的入口,性能是重中之重,早期大部分网关都是基于同步阻塞模型构建的,比如Zuul 1.x。但这种同步的模型我们都知道,每个请求/连接都会占用一个线程,而线程在JVM中是一个很重的资源,比如Tomcat默认就是200个线程,如果网关隔离没有做好的话,当发生网络延迟、FullGC、第三方服务慢等情况造成上游服务延迟时,线程池很容易会被打满,造成新的请求被拒绝,但这个时候其实线程都阻塞在IO上,系统的资源被没有得到充分的利用。另外一点,容易受网络、磁盘IO等延迟影响。需要谨慎设置超时时间,如果设置不当,且服务隔离做的不是很完善的话,网关很容易被一个慢接口拖垮。
而异步化的方式则完全不同,通常情况下一个CPU核启动一个线程即可处理所有的请求、响应。一个请求的生命周期不再固定于一个线程,而是会分成不同的阶段交由不同的线程池处理,系统的资源能够得到更充分的利用。而且因为线程不再被某一个连接独占,一个连接所占用的系统资源也会低得多,只是一个文件描述符加上几个监听器等,而在阻塞模型中,每条连接都会独占一个线程,而线程是一个非常重的资源。对于上游服务的延迟情况,也能够得到很大的缓解,因为在阻塞模型中,慢请求会独占一个线程资源,而异步化之后,因为单条连接所占用的资源变的非常低,系统可以同时处理大量的请求。
如果是JVM平台,Zuul 2、Spring Cloud gateway等都是不错的异步网关选型,另外也可以基于Netty、Spring Boot2.x的webflux、vert.x或者servlet3.1的异步支持进行自研。
缓存
对于一些幂等的get请求,可以在网关层面根据业务方指定的缓存头做一层缓存,存储到Redis等二级缓存中,这样一些重复的请求,可以在网关层直接处理,而不用打到业务线,降低业务方的压力,另外如果业务方节点挂掉,网关也能够返回自身的缓存。
限流
限流对于每个业务组件来说,可以说都是一个必须的组件,如果限流做不好的话,当请求量突增时,很容易导致业务方的服务挂掉,比如双11、双12等大促时,接口的请求量是平时的数倍,如果没有评估好容量,又没有做限流的话,很容易服务整个不可用,因此需要根据业务方接口的处理能力,做好限流策略,相信大家都见过淘宝、百度抢红包时的降级页面。
因此一定要在接入层做好限流策略,对于非核心接口可以直接将降级掉,保障核心服务的可用性,对于核心接口,需要根据压测时得到的接口容量,制定对应的限流策略。限流又分为几种:
稳定性
稳定性是网关非常重要的一环,监控、告警需要做的很完善才可以,比如接口调用量、响应时间、异常、错误码、成功率等相关的监控告警,还有线程池相关的一些,比如活跃线程数、队列积压等,还有些系统层面的,比如CPU、内存、FullGC这些基本的。
网关是所有服务的入口,对于网关的稳定性的要求相对于其他服务会更高,最好能够一直稳定的运行,尽量少重启,但当新增功能、或者加日志排查问题时,不可避免的需要重新发布,因此可以参考zuul的方式,将所有的核心功能都基于不同的拦截器实现,拦截器的代码采用Groovy编写,存储到数据库中,支持动态加载、编译、运行,这样在出了问题的时候能够第一时间定位并解决,并且如果网关需要开发新功能,只需要增加新的拦截器,并动态添加到网关即可,不需要重新发布。
熔断降级
熔断机制也是非常重要的一项。若某一个服务挂掉、接口响应严重超时等发生,则可能整个网关都被一个接口拖垮,因此需要增加熔断降级,当发生特定异常的时候,对接口降级由网关直接返回,可以基于Hystrix或者Resilience4j实现。
日志
由于所有的请求都是由网关处理的,因此日志也需要相对比较完善,比如接口的耗时、请求方式、请求IP、请求参数、响应参数(注意脱敏)等,另外由于可能涉及到很多微服务,因此需要提供一个统一的traceId方便关联所有的日志,可以将这个traceId置于响应头中,方便排查问题。
隔离
比如线程池、http连接池、redis等应用层面的隔离,另外也可以根据业务场景,将核心业务部署带单独的网关集群,与其他非核心业务隔离开。
网关管控平台
这块也是非常重要的一环,需要考虑好整个流程的用户体验,比如接入到网关的这个流程,能不能尽量简化、智能,比如如果是dubbo接口,我们可以通过到git仓库中获取源码、解析对应的类、方法,从而实现自动填充,尽量帮用户减少操作;另外接口一般是从测试-预发-线上,如果每次都要填写一遍表单会非常麻烦,我们能不能自动把这个事情做掉,另外如果网关部署到了多个可用区、甚至不同的国家,那这个时候,我们还需要接口数据同步功能,不然用户需要到每个后台都操作一遍,非常麻烦。
这块个人的建议是直接参考阿里云、aws等提供的网关服务即可,功能非常全面。
其他
其他还有些需要考虑到的点,比如接口mock,文档生成、sdk代码生成、错误码统一、服务治理相关的等,这里就不累述了。
目前的网关还是中心化的架构,所有的请求都需要走一次网关,因此当大促或者流量突增时,网关可能会成为性能的瓶颈,而且当网关接入的大量接口的时候,做好流量评估也不是一项容易的工作,每次大促前都需要跟业务方一起针对接口做压测,评估出大致的容量,并对网关进行扩容,而且网关是所有流量的入口,所有的请求都是由网关处理,要想准确的评估出容量很复杂。可以参考目前比较流行的ServiceMesh,采用去中心化的方案,将网关的逻辑下沉到sidecar中,
sidecar和应用部署到同一个节点,并接管应用流入、流出的流量,这样大促时,只需要对相关的业务压测,并针对性扩容即可,另外升级也会更平滑,中心化的网关,即使灰度发布,但是理论上所有业务方的流量都会流入到新版本的网关,如果出了问题,会影响到所有的业务,但这种去中心化的方式,可以先针对非核心业务升级,观察一段时间没问题后,再全量推上线。另外ServiceMesh的方案,对于多语言支持也更友好。
Duplicate spring bean id 问题调查
问题背景
dubbo接口mock测试:从本地调用服务器
dubbo接口mock测试的dubbo接口进行测试
实现思路 :基于IDEA+Spring+maven+Dubbo搭建测试项目
dubbo接口mock测试,从本地直接调用
具体实现思路可参考博客: https://www.cnblogs.com/xiuxingzhe/p/9250737.html
碰到问题 :引入测试目标jar后,调用其接口运行测试类时,报错如下
Caused by: java.lang.IllegalStateException: Duplicate spring bean id cfgDistributorServiceImpl
at com.alibaba.dubbo.config.spring.schema.DubboBeanDefinitionParser.parse(DubboBeanDefinitionParser.java:106)
at com.alibaba.dubbo.config.spring.schema.DubboBeanDefinitionParser.parse(DubboBeanDefinitionParser.java:77)
at org.springframework.beans.factory.xml.NamespaceHandlerSupport.parse(NamespaceHandlerSupport.java:74)
at org.springframework.beans.factory.xml.BeanDefinitionParserDelegate.parseCustomElement(BeanDefinitionParserDelegate.java:1411)
at org.springframework.beans.factory.xml.BeanDefinitionParserDelegate.parseCustomElement(BeanDefinitionParserDelegate.java:1401)
at org.springframework.beans.factory.xml.DefaultBeanDefinitionDocumentReader.parseBeanDefinitions(DefaultBeanDefinitionDocumentReader.java:168)
at org.springframework.beans.factory.xml.DefaultBeanDefinitionDocumentReader.doRegisterBeanDefinitions(DefaultBeanDefinitionDocumentReader.java:138)
at org.springframework.beans.factory.xml.DefaultBeanDefinitionDocumentReader.registerBeanDefinitions(DefaultBeanDefinitionDocumentReader.java:94)
at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.registerBeanDefinitions(XmlBeanDefinitionReader.java:508)
at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.doLoadBeanDefinitions(XmlBeanDefinitionReader.java:392)
调查思路 :
1.检查项目中spring是否加载了两个一样的配置文件
spring对于id的重复,默认的处理策略是覆盖
但是dubbo的新版本对重复的id做了特殊处理,如果有重复直接抛异常,就会出现上述问题
检查结果:自己的项目中并没有重复加载配置文件
2.spring扫描项目时,不仅会扫描当前项目中dubbo消费者,新建的类等需要注册的bean
还会扫描pom.xml中引入的jar包中的带有以下注解的类:@Component,@Repository,@Service,@Controller,@RestController,@ControllerAdvice, @Configuration
所以在引入包的时候,不能引入service包,因为service层的类多包含有注解@service,需要引入的是facade接口层的jar包
检查了一下,自己引入的就是service层的jar包,至此问题找到了
com.msa.base
base-service
1.0-SNAPSHOT
修改成facade层的引入
com.msa.base
base-service-facade
1.0-SNAPSHOT
重跑测试类:调用成功
关于dubbo接口mock测试和dubbo接口怎么测的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
dubbo接口mock测试的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于dubbo接口怎么测、dubbo接口mock测试的信息别忘了在本站进行查找喔。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
暂时没有评论,来抢沙发吧~