java中的接口是类吗
260
2023-05-09
java 矩阵乘法的mapreduce程序实现
java 矩阵乘法的mapreduce程序实现
map函数:对于矩阵M中的每个元素m(ij),产生一系列的key-value对<(i,k),(M,j,m(ij))>
其中k=1,2.....知道矩阵N的总列数;对于矩阵N中的每个元素n(jk),产生一系列的key-value对<(i , k) , (N , j ,n(jk)>, 其中i=1,2.......直到i=1,2.......直到矩阵M的总列数。
map
package com.cb.matrix;
import static org.mockito.Matchers.intThat;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapreduce.Mapper;
import com.sun.org.apache.bcel.internal.generic.NEW;
public class MatrixMapper extends Mapper
private Text map_key=new Text();
private Text map_value= new Text();
private int columnN;
private int rowM;
/**sNMMWMWKxl
* 执行map()函数前先由conf.get()得到main函数中提供的必要变量
* 也就是从输入文件名中得到的矩阵维度信息
*/
@Override
protected void setup(Mapper
// TODO Auto-generated method stub
Configuration config=context.getConfiguration();
columnN=Integer.parseInt(config.get("columnN"));
rowM =Integer.parseInt(config.get("rowM"));
}
@Override
protected void map(Object key, Text value, Mapper
throws IOException, InterruptedException {
// TODO Auto-generated method stub
//得到文件名,从而区分输入矩阵M和N
FileSplit fileSplit=(FileSplit)context.getInputSplit();
String fileName=fileSplit.getPath().getName();
if (fileName.contains("M")) {
String[] tuple =value.toString().split(",");
int i =Integer.parseInt(tuple[0]);
String[] tuples=tuple[1].split("\t");
int j=Integer.parseInt(tuples[0]);
int Mij=Integer.parseInt(tuples[1]);
for(http://int k=1;k map_key.set(i+","+k); map_value.set("M"+","+j+","+Mij); context.write(map_key, map_value); } } else if(fileName.contains("N")){ String[] tuple=value.toString().split(","); int j=Integer.parseInt(tuple[0]); String[] tuples =tuple[1].split("\t"); int k=Integer.parseInt(tuples[0]); int Njk=Integer.parseInt(tuples[1]); for(int i=1;i map_key.set(i+","+k); map_value.set("N"+","+j+","+Njk); context.write(map_key, map_value); } } } } reduce函数:对于每个键(i,k)相关联的值(M,j,m(ij))及(N,j,n(jk)),根据相同的j值将m(ij)和n(jk)分别存入不同的数组中,然后将俩者的第j个元素抽取出来分别相乘,最后相加,即可得到p(jk)的值。 reducer package com.cb.matrix; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class MatrixReducer extends Reducer private int sum=0; private int columnM; @Override protected void setup(Reducer // TODO Auto-generated method stub Configuration conf =context.getConfiguration(); columnM=Integer.parseInt(conf.get("columnM")); } @Override protected void reduce(Text arg0, Iterable throws IOException, InterruptedException { // TODO Auto-generated method stub int[] M=new int[columnM+1]; int[] N=new int[columnM+1]; for(Text val:arg1){ String[] tuple=val.toString().split(","); if(tuple[0].equals("M")){ M[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]); }else{ N[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]); } for(int j=1;j sum+=M[j]*N[j]; } arg2.write(arg0, new Text(Integer.toString(sum))); sum=0; } } } 感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
map_key.set(i+","+k);
map_value.set("M"+","+j+","+Mij);
context.write(map_key, map_value);
}
}
else if(fileName.contains("N")){
String[] tuple=value.toString().split(",");
int j=Integer.parseInt(tuple[0]);
String[] tuples =tuple[1].split("\t");
int k=Integer.parseInt(tuples[0]);
int Njk=Integer.parseInt(tuples[1]);
for(int i=1;i map_key.set(i+","+k); map_value.set("N"+","+j+","+Njk); context.write(map_key, map_value); } } } } reduce函数:对于每个键(i,k)相关联的值(M,j,m(ij))及(N,j,n(jk)),根据相同的j值将m(ij)和n(jk)分别存入不同的数组中,然后将俩者的第j个元素抽取出来分别相乘,最后相加,即可得到p(jk)的值。 reducer package com.cb.matrix; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class MatrixReducer extends Reducer private int sum=0; private int columnM; @Override protected void setup(Reducer // TODO Auto-generated method stub Configuration conf =context.getConfiguration(); columnM=Integer.parseInt(conf.get("columnM")); } @Override protected void reduce(Text arg0, Iterable throws IOException, InterruptedException { // TODO Auto-generated method stub int[] M=new int[columnM+1]; int[] N=new int[columnM+1]; for(Text val:arg1){ String[] tuple=val.toString().split(","); if(tuple[0].equals("M")){ M[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]); }else{ N[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]); } for(int j=1;j sum+=M[j]*N[j]; } arg2.write(arg0, new Text(Integer.toString(sum))); sum=0; } } } 感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
map_key.set(i+","+k);
map_value.set("N"+","+j+","+Njk);
context.write(map_key, map_value);
}
}
}
}
reduce函数:对于每个键(i,k)相关联的值(M,j,m(ij))及(N,j,n(jk)),根据相同的j值将m(ij)和n(jk)分别存入不同的数组中,然后将俩者的第j个元素抽取出来分别相乘,最后相加,即可得到p(jk)的值。
reducer
package com.cb.matrix;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class MatrixReducer extends Reducer
private int sum=0;
private int columnM;
@Override
protected void setup(Reducer
// TODO Auto-generated method stub
Configuration conf =context.getConfiguration();
columnM=Integer.parseInt(conf.get("columnM"));
}
@Override
protected void reduce(Text arg0, Iterable
throws IOException, InterruptedException {
// TODO Auto-generated method stub
int[] M=new int[columnM+1];
int[] N=new int[columnM+1];
for(Text val:arg1){
String[] tuple=val.toString().split(",");
if(tuple[0].equals("M")){
M[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]);
}else{
N[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]);
}
for(int j=1;j sum+=M[j]*N[j]; } arg2.write(arg0, new Text(Integer.toString(sum))); sum=0; } } } 感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
sum+=M[j]*N[j];
}
arg2.write(arg0, new Text(Integer.toString(sum)));
sum=0;
}
}
}
感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~