Flask接口签名sign原理与实例代码浅析
217
2023-05-18
Java 归并排序算法、堆排序算法实例详解
基本思想:
归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
归并排序示例:
合并方法:
设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i +1、n-m。
j=m+1;k=i;i=i; //置两个子表的起始下标及辅助数组的起始下标
若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束
//选取r[i]和r[j]较小的存入辅助数组rf
如果r[i] 否则,rf[k]=r[j]; j++; k++; 转⑵ //将尚未处理完的子表中元素存入rf 如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空 如果j<=n , 将r[j…n] 存入rf[k…n] //后一子表非空 合并结束。 算法实现: /** * 归并排序 * 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列 * 时间复杂度为O(nlogn) * 稳定排序方式 * @param nums 待排序数组 * @return 输出有序数组 */ public static int[] sort(int[] nums, int low, int high) { int mid = (low + high) / 2; if (low < high) { // 左边 sort(nums, low, mid); // 右边 sort(nums, mid + 1, high); // 左右归并 merge(nums, low, mid, high); } return nums; } /** * 将数组中low到high位置的数进行排序 * @param nums 待排序数组 * @param low 待排的开始位置 * @param mid 待排中间位置 * @param high 待排结束位置 */ public static void merge(int[] nums, int low, int mid, int high) { int[] temp = new int[high - low + 1]; int i = low;// 左指针 int j = mhttp://id + 1;// 右指针 int k = 0; // 把较小的数先移到新数组中 while (i <= mid && j <= high) { if (nums[i] < nums[j]) { temp[k++] = nums[i++]; } else { temp[k++] = nums[j++]; } } // 把左边剩余的数移入数组 while (i <= mid) { temp[k++] = nums[i++]; } // 把右边边剩余的数移入数组 while (j <= high) { temp[k++] = nums[j++]; } // 把新数组中的数覆盖nums数组 for (int k2 = 0; k2 < temp.length; k2++) { nums[k2 + low] = temp[k2]; } } 二、堆排序算法 1、基本思想: 堆排序是一种树形选择排序,是对直接选择排序的有效改进。 堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。 思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函 数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。 2、实例 初始序列:46,79,56,38,40,84 建堆: 交换,从堆中踢出最大数 依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。 3.算法实现: public class HeapSort { public static void main(String[] args) { int[] a={49,38,65,9http://7,76,13,27,49,78,34,12,64}; int arrayLength=a.length; //循环建堆 for(int i=0;i //建堆 buildMaxHeap(a,arrayLength-1-i); //交换堆顶和最后一个元素 swap(a,0,arrayLength-1-i); System.out.println(Arrays.toString(a)); } } //对data数组从0到lastIndex建大顶堆 public static void buildMaxHeap(int[] data, int lastIndex){ //从lastIndex处节点(最后一个节点)的父节点开始 for(int i=(lastIndex-1)/2;i>=0;i--){ //k保存正在判断的节点 int k=i; //如果当前k节点的子节点存在 while(k*2+1<=lastIndex){ //k节点的左子节点的索引 int biggerIndex=2*k+1; //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在 CocUUDzqkE if(biggerIndex //若果右子节点的值较大 if(data[biggerIndex] //biggerIndex总是记录较大子节点的索引 biggerIndex++; } } //如果k节点的值小于其较大的子节点的值 if(data[k] //交换他们 swap(data,k,biggerIndex); //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 k=biggerIndex; }else{ break; } } } } //交换 private static void swap(int[] data, int i, int j) { int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } } 以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!
否则,rf[k]=r[j]; j++; k++; 转⑵
//将尚未处理完的子表中元素存入rf
如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空
如果j<=n , 将r[j…n] 存入rf[k…n] //后一子表非空
合并结束。
算法实现:
/**
* 归并排序
* 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列
* 时间复杂度为O(nlogn)
* 稳定排序方式
* @param nums 待排序数组
* @return 输出有序数组
*/
public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) {
// 左边
sort(nums, low, mid);
// 右边
sort(nums, mid + 1, high);
// 左右归并
merge(nums, low, mid, high);
}
return nums;
}
/**
* 将数组中low到high位置的数进行排序
* @param nums 待排序数组
* @param low 待排的开始位置
* @param mid 待排中间位置
* @param high 待排结束位置
*/
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;// 左指针
int j = mhttp://id + 1;// 右指针
int k = 0;
// 把较小的数先移到新数组中
while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
}
// 把左边剩余的数移入数组
while (i <= mid) {
temp[k++] = nums[i++];
}
// 把右边边剩余的数移入数组
while (j <= high) {
temp[k++] = nums[j++];
}
// 把新数组中的数覆盖nums数组
for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}
二、堆排序算法
1、基本思想:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函 数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
2、实例
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
3.算法实现:
public class HeapSort {
public static void main(String[] args) {
int[] a={49,38,65,9http://7,76,13,27,49,78,34,12,64};
int arrayLength=a.length;
//循环建堆
for(int i=0;i //建堆 buildMaxHeap(a,arrayLength-1-i); //交换堆顶和最后一个元素 swap(a,0,arrayLength-1-i); System.out.println(Arrays.toString(a)); } } //对data数组从0到lastIndex建大顶堆 public static void buildMaxHeap(int[] data, int lastIndex){ //从lastIndex处节点(最后一个节点)的父节点开始 for(int i=(lastIndex-1)/2;i>=0;i--){ //k保存正在判断的节点 int k=i; //如果当前k节点的子节点存在 while(k*2+1<=lastIndex){ //k节点的左子节点的索引 int biggerIndex=2*k+1; //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在 CocUUDzqkE if(biggerIndex //若果右子节点的值较大 if(data[biggerIndex] //biggerIndex总是记录较大子节点的索引 biggerIndex++; } } //如果k节点的值小于其较大的子节点的值 if(data[k] //交换他们 swap(data,k,biggerIndex); //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 k=biggerIndex; }else{ break; } } } } //交换 private static void swap(int[] data, int i, int j) { int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } } 以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!
//建堆
buildMaxHeap(a,arrayLength-1-i);
//交换堆顶和最后一个元素
swap(a,0,arrayLength-1-i);
System.out.println(Arrays.toString(a));
}
}
//对data数组从0到lastIndex建大顶堆
public static void buildMaxHeap(int[] data, int lastIndex){
//从lastIndex处节点(最后一个节点)的父节点开始
for(int i=(lastIndex-1)/2;i>=0;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while(k*2+1<=lastIndex){
//k节点的左子节点的索引
int biggerIndex=2*k+1;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
CocUUDzqkE if(biggerIndex //若果右子节点的值较大 if(data[biggerIndex] //biggerIndex总是记录较大子节点的索引 biggerIndex++; } } //如果k节点的值小于其较大的子节点的值 if(data[k] //交换他们 swap(data,k,biggerIndex); //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 k=biggerIndex; }else{ break; } } } } //交换 private static void swap(int[] data, int i, int j) { int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } } 以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!
//若果右子节点的值较大
if(data[biggerIndex] //biggerIndex总是记录较大子节点的索引 biggerIndex++; } } //如果k节点的值小于其较大的子节点的值 if(data[k] //交换他们 swap(data,k,biggerIndex); //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 k=biggerIndex; }else{ break; } } } } //交换 private static void swap(int[] data, int i, int j) { int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } } 以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!
//biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
//如果k节点的值小于其较大的子节点的值
if(data[k] //交换他们 swap(data,k,biggerIndex); //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 k=biggerIndex; }else{ break; } } } } //交换 private static void swap(int[] data, int i, int j) { int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } } 以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!
//交换他们
swap(data,k,biggerIndex);
//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k=biggerIndex;
}else{
break;
}
}
}
}
//交换
private static void swap(int[] data, int i, int j) {
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}
}
以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~