Java 归并排序算法、堆排序算法实例详解

网友投稿 217 2023-05-18


Java 归并排序算法、堆排序算法实例详解

基本思想:

归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

归并排序示例:

合并方法:

设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i +1、n-m。

j=m+1;k=i;i=i; //置两个子表的起始下标及辅助数组的起始下标

若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束

//选取r[i]和r[j]较小的存入辅助数组rf

如果r[i]

否则,rf[k]=r[j]; j++; k++; 转⑵

//将尚未处理完的子表中元素存入rf

如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空

如果j<=n ,  将r[j…n] 存入rf[k…n] //后一子表非空

合并结束。

算法实现:

/**

* 归并排序

* 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列

* 时间复杂度为O(nlogn)

* 稳定排序方式

* @param nums 待排序数组

* @return 输出有序数组

*/

public static int[] sort(int[] nums, int low, int high) {

int mid = (low + high) / 2;

if (low < high) {

// 左边

sort(nums, low, mid);

// 右边

sort(nums, mid + 1, high);

// 左右归并

merge(nums, low, mid, high);

}

return nums;

}

/**

* 将数组中low到high位置的数进行排序

* @param nums 待排序数组

* @param low 待排的开始位置

* @param mid 待排中间位置

* @param high 待排结束位置

*/

public static void merge(int[] nums, int low, int mid, int high) {

int[] temp = new int[high - low + 1];

int i = low;// 左指针

int j = mhttp://id + 1;// 右指针

int k = 0;

// 把较小的数先移到新数组中

while (i <= mid && j <= high) {

if (nums[i] < nums[j]) {

temp[k++] = nums[i++];

} else {

temp[k++] = nums[j++];

}

}

// 把左边剩余的数移入数组

while (i <= mid) {

temp[k++] = nums[i++];

}

// 把右边边剩余的数移入数组

while (j <= high) {

temp[k++] = nums[j++];

}

// 把新数组中的数覆盖nums数组

for (int k2 = 0; k2 < temp.length; k2++) {

nums[k2 + low] = temp[k2];

}

}

二、堆排序算法

1、基本思想:

堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。

思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函 数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

2、实例

初始序列:46,79,56,38,40,84

建堆:

交换,从堆中踢出最大数

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

3.算法实现:

public class HeapSort {

public static void main(String[] args) {

int[] a={49,38,65,9http://7,76,13,27,49,78,34,12,64};

int arrayLength=a.length;

//循环建堆

for(int i=0;i

//建堆

buildMaxHeap(a,arrayLength-1-i);

//交换堆顶和最后一个元素

swap(a,0,arrayLength-1-i);

System.out.println(Arrays.toString(a));

}

}

//对data数组从0到lastIndex建大顶堆

public static void buildMaxHeap(int[] data, int lastIndex){

//从lastIndex处节点(最后一个节点)的父节点开始

for(int i=(lastIndex-1)/2;i>=0;i--){

//k保存正在判断的节点

int k=i;

//如果当前k节点的子节点存在

while(k*2+1<=lastIndex){

//k节点的左子节点的索引

int biggerIndex=2*k+1;

//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在

CocUUDzqkE if(biggerIndex

//若果右子节点的值较大

if(data[biggerIndex]

//biggerIndex总是记录较大子节点的索引

biggerIndex++;

}

}

//如果k节点的值小于其较大的子节点的值

if(data[k]

//交换他们

swap(data,k,biggerIndex);

//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值

k=biggerIndex;

}else{

break;

}

}

}

}

//交换

private static void swap(int[] data, int i, int j) {

int tmp=data[i];

data[i]=data[j];

data[j]=tmp;

}

}

以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!

否则,rf[k]=r[j]; j++; k++; 转⑵

//将尚未处理完的子表中元素存入rf

如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空

如果j<=n ,  将r[j…n] 存入rf[k…n] //后一子表非空

合并结束。

算法实现:

/**

* 归并排序

* 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列

* 时间复杂度为O(nlogn)

* 稳定排序方式

* @param nums 待排序数组

* @return 输出有序数组

*/

public static int[] sort(int[] nums, int low, int high) {

int mid = (low + high) / 2;

if (low < high) {

// 左边

sort(nums, low, mid);

// 右边

sort(nums, mid + 1, high);

// 左右归并

merge(nums, low, mid, high);

}

return nums;

}

/**

* 将数组中low到high位置的数进行排序

* @param nums 待排序数组

* @param low 待排的开始位置

* @param mid 待排中间位置

* @param high 待排结束位置

*/

public static void merge(int[] nums, int low, int mid, int high) {

int[] temp = new int[high - low + 1];

int i = low;// 左指针

int j = mhttp://id + 1;// 右指针

int k = 0;

// 把较小的数先移到新数组中

while (i <= mid && j <= high) {

if (nums[i] < nums[j]) {

temp[k++] = nums[i++];

} else {

temp[k++] = nums[j++];

}

}

// 把左边剩余的数移入数组

while (i <= mid) {

temp[k++] = nums[i++];

}

// 把右边边剩余的数移入数组

while (j <= high) {

temp[k++] = nums[j++];

}

// 把新数组中的数覆盖nums数组

for (int k2 = 0; k2 < temp.length; k2++) {

nums[k2 + low] = temp[k2];

}

}

二、堆排序算法

1、基本思想:

堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。

思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函 数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

2、实例

初始序列:46,79,56,38,40,84

建堆:

交换,从堆中踢出最大数

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

3.算法实现:

public class HeapSort {

public static void main(String[] args) {

int[] a={49,38,65,9http://7,76,13,27,49,78,34,12,64};

int arrayLength=a.length;

//循环建堆

for(int i=0;i

//建堆

buildMaxHeap(a,arrayLength-1-i);

//交换堆顶和最后一个元素

swap(a,0,arrayLength-1-i);

System.out.println(Arrays.toString(a));

}

}

//对data数组从0到lastIndex建大顶堆

public static void buildMaxHeap(int[] data, int lastIndex){

//从lastIndex处节点(最后一个节点)的父节点开始

for(int i=(lastIndex-1)/2;i>=0;i--){

//k保存正在判断的节点

int k=i;

//如果当前k节点的子节点存在

while(k*2+1<=lastIndex){

//k节点的左子节点的索引

int biggerIndex=2*k+1;

//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在

CocUUDzqkE if(biggerIndex

//若果右子节点的值较大

if(data[biggerIndex]

//biggerIndex总是记录较大子节点的索引

biggerIndex++;

}

}

//如果k节点的值小于其较大的子节点的值

if(data[k]

//交换他们

swap(data,k,biggerIndex);

//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值

k=biggerIndex;

}else{

break;

}

}

}

}

//交换

private static void swap(int[] data, int i, int j) {

int tmp=data[i];

data[i]=data[j];

data[j]=tmp;

}

}

以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!

//建堆

buildMaxHeap(a,arrayLength-1-i);

//交换堆顶和最后一个元素

swap(a,0,arrayLength-1-i);

System.out.println(Arrays.toString(a));

}

}

//对data数组从0到lastIndex建大顶堆

public static void buildMaxHeap(int[] data, int lastIndex){

//从lastIndex处节点(最后一个节点)的父节点开始

for(int i=(lastIndex-1)/2;i>=0;i--){

//k保存正在判断的节点

int k=i;

//如果当前k节点的子节点存在

while(k*2+1<=lastIndex){

//k节点的左子节点的索引

int biggerIndex=2*k+1;

//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在

CocUUDzqkE if(biggerIndex

//若果右子节点的值较大

if(data[biggerIndex]

//biggerIndex总是记录较大子节点的索引

biggerIndex++;

}

}

//如果k节点的值小于其较大的子节点的值

if(data[k]

//交换他们

swap(data,k,biggerIndex);

//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值

k=biggerIndex;

}else{

break;

}

}

}

}

//交换

private static void swap(int[] data, int i, int j) {

int tmp=data[i];

data[i]=data[j];

data[j]=tmp;

}

}

以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!

//若果右子节点的值较大

if(data[biggerIndex]

//biggerIndex总是记录较大子节点的索引

biggerIndex++;

}

}

//如果k节点的值小于其较大的子节点的值

if(data[k]

//交换他们

swap(data,k,biggerIndex);

//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值

k=biggerIndex;

}else{

break;

}

}

}

}

//交换

private static void swap(int[] data, int i, int j) {

int tmp=data[i];

data[i]=data[j];

data[j]=tmp;

}

}

以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!

//biggerIndex总是记录较大子节点的索引

biggerIndex++;

}

}

//如果k节点的值小于其较大的子节点的值

if(data[k]

//交换他们

swap(data,k,biggerIndex);

//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值

k=biggerIndex;

}else{

break;

}

}

}

}

//交换

private static void swap(int[] data, int i, int j) {

int tmp=data[i];

data[i]=data[j];

data[j]=tmp;

}

}

以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!

//交换他们

swap(data,k,biggerIndex);

//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值

k=biggerIndex;

}else{

break;

}

}

}

}

//交换

private static void swap(int[] data, int i, int j) {

int tmp=data[i];

data[i]=data[j];

data[j]=tmp;

}

}

以上所述是给大家介绍的java 归并排序算法、堆排序算法实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Eolinker API DevOps 私有云 6.6 更新:支持 Websocket、Socket、SOAP 类型 API,大幅优化 API 测试体验等
下一篇:Java IO流 File类的常用API实例
相关文章

 发表评论

暂时没有评论,来抢沙发吧~