详解Java中LinkedHashMap

网友投稿 412 2023-05-19


详解Java中LinkedHashMap

初识LinkedHashMap

大多数情况下,只要不涉及线程安全问题,Map基本都可以使用HashMap,不过HashMap有一个问题,就是迭代HashMap的顺序并不是HashMap放置的顺序,也就是无序。HashMap的这一缺点往往会带来困扰,因为有些场景,我们期待一个有序的Map。

这个时候,LinkedHashMap就闪亮登场了,它虽然增加了时间和空间上的开销,但是通过维护一个运行于所有条目的双向链表,LinkedHashMap保证了元素迭代的顺序。

四个关注点在LinkedHashMap上的答案

关  注  点

结      论

LinkedHashMap是否允许空

Key和Value都允许空

LinkedHashMap是否允许重复数据

Key重复会覆盖、Value允许重复

LinkedHashMap是否有序

有序

LinkedHashMap是否线程安全

非线程安全

LinkedHashMap基本结构

关于LinkedHashMap,先提两点:

1、LinkedHashMap可以认为是HashMap+LinkedList,即它既使用HashMap操作数据结构,又使用LinkedList维护插入元素的先后顺序

2、LinkedHashMap的基本实现思想就是----多态。可以说,理解多态,再去理解LinkedHashMap原理会事半功倍;反之也是,对于LinkedHashMap原理的学习,也可以促进和加深对于多态的理解。

为什么可以这么说,首先看一下,LinkedHashMap的定义:

public class LinkedHashMap

extends HashMap

implements Map

{

...

}

看到,LinkedHashMap是HashMap的子类,自然LinkedHashMap也就继承了HashMap中所有非private的方法。再看一下LinkedHashMap中本身的方法:

看到LinkedHashMap中并没有什么操作数据结构的方法,也就是说LinkedHashMap操作数据结构(比如put一个数据),和HashMap操作数据的方法完全一样,无非就是细节上有一些的不同罢了。

LinkedHashMap和HashMap的区别在于它们的基本数据结构上,看一下LinkedHashMap的基本数据结构,也就是Entry:

private static class Entry extends HashMap.Entry {

// These fields comprise the doubly linked list used for iteration.

Entry before, after;

Entry(int hash, K key, V value, HashMap.Entry next) {

super(hash, key, value, next);

}

...

}

列一下Entry里面有的一些属性吧:

K key

V value

Entry next

int hash

Entry before

Entry after

其中前面四个,也就是红色部分是从HashMap.Entry中继承过来的;后面两个,也就是蓝色部分是LinkedHashMap独有的。不要搞错了next和before、After,next是用于维护HashMap指定table位置上连接的Entry的顺序的,before、After是用于维护Entry插入的先后顺序的。

还是用图表示一下,列一下属性而已:

初始化LinkedHashMap

假如有这么一段代码:

public static void main(String[] args)

{

LinkedHashMap linkedHashMap =

new LinkedHashMap();

linkedHashMap.put("111", "111");

linkedHashMap.put("222", "222");

}

首先是第3行~第4行,new一个LinkedHashMap出来,看一下做了什么:

public LinkedHashMap() {

super();

accessOrder = false;

}

public HashMap() {

this.loadFactor = DEFAULT_LOAD_FACTOR;

threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);

table = new Entry[DEFAULT_INITIAL_CAPACITY];

init();

}

void init() {

header = new Entry(-1, null, null, null);

header.before = header.after = header;

}

/**

* The head of the doubly linked list.

*/

private transient Entry header;

这里出现了第一个多态:init()方法。尽管init()方法定义在HashMap中,但是由于:

1、LinkedHashMap重写了init方法

2、实例化出来的是LinkedHashMap

因此实际调用的init方法是LinkedHashMap重写的init方法。假设header的地址是0x00000000,那么初始化完毕,实际上是这样的:

LinkedHashMap添加元素

继续看LinkedHashMap添加元素,也就是put("111","111")做了什么,首先当然是调用HashMap的put方法:

public V put(K key, V value) {

if (key == null)

return putForNullKey(value);

int hash = hash(key.hashCode());

int i = indexFor(hash, table.length);

for (Entry e = table[i]; e != null; e = e.next) {

Object k;

if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {

V oldValue = e.value;

e.value = value;

e.recordAccess(this);

return oldValue;

}

}

modCount++;

addEntry(hash, key, value, i);

return null;

}

第17行又是一个多态,因为LinkedHashMap重写了addEntry方法,因此addEntry调用的是LinkedHashMap重写了的方法:

void addEntry(int hash, K key, V value, int bucketIndex) {

createEntry(hash, key, value, bucketIndex);

// Remove eldest entry if instructed, else grow capacity if appropriate

Entry eldest = header.after;

if (removeEldestEntry(eldest)) {

removeEntryForKey(eldest.key);

} else {

if (size >= threshold)

resize(2 * table.length);

}

}

因为LinkedHashMap由于其本身维护了插入的先后顺序,因此LinkedHashMap可以用来做缓存,第5行~第7行是用来支持FIFO算法的,这里暂时不用去关心它。看一下createEntry方法:

void createEntry(int hash, K key, V value, int bucketIndex) {

HashMap.Entry old = table[bucketIndex];

Entry e = new Entry(hash, key, value, old);

table[bucketIndex] = e;

e.addBefore(header);

size++;

}

private void addBefore(Entry existingEntry) {

after = existingEntry;

before = existingEntry.before;

before.after = this;

after.before = this;

}

第2行~第4行的代码和HashMap没有什么不同,新添加的元素放在table[i]上,差别在于LinkedHashMap还做了addBefore操作,这四行代码的意思就是让新的Entry和原链表生成一个双向链表。假设字符串111放在位置table[1]上,生成的Entry地址为0x00000001,那么用图表示是这样的:

如果熟悉LinkedList的源码应该不难理解,还是解释一下,注意下existingEntry表示的是header:

1、after=existingEntry,即新增的Entry的after=header地址,即after=0x00000000

2、before=existingEntry.before,即新增的Entry的before是header的before的地址,header的before此时是0x00000000,因此新增的Entry的before=0x00000000

3、before.after=this,新增的Entry的before此时为0x00000000即header,header的after=this,即header的after=0x00000001

4、after.before=this,新增的Entry的after此时为0x00000000即header,header的before=this,即header的before=0x00000001

这样,header与新增的Entry的一个双向链表就形成了。再看,新增了字符串222之后是什么样的,假设新增的Entry的地址为0x00000002,生成到table[2]上,用图表示是这样的:

就不细解释了,只要before、after清除地知道代表的是哪个Entry的就不会有什么问题。

总得来看,再说明一遍,LinkedHashMap的实现就是HashMap+LinkedList的实现方式,以HashMap维护数据结构,以LinkList的方式维护数据插入顺序。

利用LinkedHashMap实现LRU算法缓存

前面讲了LinkedHashMap添加元素,删除、修改元素就不说了,比较简单,和HashMap+LinkedList的删除、修改元素大同小异,下面讲一个新的内容。

LinkedHashMap可以用来作缓存,比方说LRUCache,看一下这个类的代码,很简单,就十几行而已:

public class LRUCache extends LinkedHashMap

{

public LRUCache(int maxSize)

{

super(maxSize, 0.75F, true);

maxElements = maxSize;

}

protected boolean removeEldestEntry(java.util.Map.Entry eldest)

{

return size() > maxElements;

}

private static final long serialVersionUID = 1L;

protected int maxElements;

}

顾名思义,LRUCache就是基于LRU算法的Cache(缓存),这个类继承自LinkedHashMap,而类中看到没有什么特别的方法,这说明LRUCache实现缓存LRU功能都是源自LinkedHashMap的。LinkedHashMap可以实现LRU算法的缓存基于两点:

1、LinkedList首先它是一个Map,Map是基于K-V的,和缓存一致

2、LinkedList提供了一个boolean值可以让用户指定是否实现LRU

那么,首先我们了解一下什么是LRU:LRU即Least Recently Used,最近最少使用,也就是说,当缓存满了,会优先淘汰那些最近最不常访问的数据。比方说数据a,1天前访问了;数据b,2天前访问了,缓存满了,优先会淘汰数据b。

我们看一下LinkedList带boolean型参数的构造方法:

public LinkedHashMap(int initialCapacity,

float loadFactor,

boolean accessOrder) {

super(initialCapacity, loadFactor);

this.accessOrder = accessOrder;

}

就是这个accessOrder,它表示:

(1)false,所有的Entry按照插入的顺序排列

(2)true,所有的Entry按照访问的顺序排列

第二点的意思就是,如果有1 2 3这3个Entry,那么访问了1,就把1移到尾部去,即2 3 1。每次访问都把访问的那个数据移到双向队列的尾部去,那么每次要淘汰数据的时候,双向队列最头的那个数据不就是最不常访问的那个数据了吗?换句话说,双向链表最头的那个数据就是要淘汰的数据。

"访问",这个词有两层意思:

1、根据Key拿到Value,也就是get方法

2、修改Key对应的Value,也就是put方法

首先看一下get方法,它在LinkedHashMap中被重写:

public V get(Object key) {

Entry e = (Entry)getEntry(key);

if (e == null)

return null;

e.recordAccess(this);

return e.value;

}

然后是put方法,沿用父类HashMap的:

public V put(K key, V value) {

if (key == null)

return putForNullKey(value);

int hash = hash(key.hashCode());

int i = indexFor(hash, table.length);

for (Entry e = table[i]; e != null; e = e.next) {

Object k;

if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {

V oldValue = e.value;

e.value = value;

e.recordAccess(this);

return oldValue;

}

}

modCount++;

addEntry(hash, key, value, i);

return null;

}

修改数据也就是第6行~第14行的代码。看到两端代码都有一个共同点:都调用了recordAccess方法,且这个方法是Entry中的方法,也就是说每次的recordAccess操作的都是某一个固定的Entry。

recordAccess,顾名思义,记录访问,也就是说你这次访问了双向链表,我就把你记录下来,怎么记录?把你访问的Entry移到尾部去。这个方法在HashMap中是一个空方法,就是用来给子类记录访问用的,看一下LinkedHashMap中的实现:

void recordAccess(HashMap m) {

LinkedHashMap lm = (LinkedHashMap)m;

if (lm.accessOrder) {

lm.modCount++;

remove();

addBefore(lm.header);

}

}

private void remove() {

before.after = after;

after.before = before;

}

private void addBefore(Entry existingEntry) {

after = existingEntry;

before = existingEntry.before;

before.after = this;

after.before = this;

}

看到每次recordAccess的时候做了两件事情:

1、把待移动的Entry的前后Entry相连

2、把待移动的Entry移动到尾部

当然,这一切都是基于accessOrder=true的情况下。最后用一张图表示一下整个recordAccess的过程吧:

代码演示LinkedHashMap按照访问顺序排序的效果

最后代码演示一下LinkedList按照访问顺序排序的效果,验证一下上一部分LinkedHashMap的LRU功能:

public static void main(String[] args)

{

LinkedHashMap linkedHashMap =

new LinkedHashMap(16, 0.75f, true);

linkedHashMap.put("111", "111");

linkedHashMap.put("222", "222");

linkedHashMap.put("333", "333");

linkedHashMap.put("444", "444");

loopLinkedHashMap(linkedHashMap);

linkedHashMap.get("111");

loopLinkedHashMap(linkedHashMap);

linkedHashMap.put("222", "2222");

loopLinkedHashMap(linkedHashMap);

}

public static void loopLinkedHashMap(LinkedHashMap linkedHashMap)

{

Set> set = inkedHashMap.entrySet();

Iterator> iterator = set.iterator();

while (iterator.hasNext())

{

System.out.print(iterator.next() + "\t");

}

System.out.println();

}

注意这里的构造方法要用三个参数那个且最后的要传入true,这样才表示按照访问顺序排序。看一下代码运行结果:

111=111 222=222 333=333 444=444

222=222 333=333 444=444 111=111

333=333 444=444 111=111 222=2222

代码运行结果证明了两点:

1、LinkedList是有序的

2、每次访问一个元素(get或put),被访问的元素都被提到最后面去了


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Vue实现双向数据绑定
下一篇:ES6学习教程之对象的扩展详解
相关文章

 发表评论

暂时没有评论,来抢沙发吧~