java数据结构与算法之桶排序实现方法详解

网友投稿 225 2023-05-19


java数据结构与算法之桶排序实现方法详解

本文实例讲述了java数据结构与算法之桶排序实现方法。分享给大家供大家参考,具体如下:

基本思想:

假定输入是由一个随机过程产生的[0, M)区间上均匀分布的实数。将区间[0, M)划分为n个大小相等的子区间(桶),将n个输入元素分配到这些桶中,对桶中元素进行排序,然后依次连接桶输入0 ≤A[1..n]

[桶——关键字]映射函数

bindex=f(key)   其中,bindex 为桶数组B的下标(即第bindex个桶), k为待排序列的关键字。桶排序之所以能够高效,其关键在于这个映射函数,它必须做到:如果关键字k1

假如待排序列K= {49、 38 、 35、 97 、 76、 73 、 27、 49 }。这些数据全部在1—100之间。因此我们定制10个桶,然后确定映射函数f(k)=k/10。则第一个关键字49将定位到第4个桶中(49/10=4)。依次将所有关键字全部堆入桶中,并在每个非空的桶中进行快速排序后得到如下图所示:

对上图只要顺序输出每个B[i]中的数据就可以得到有序序列了。

算法核心代码如下:

///

/// 桶排序

///

///如果有重复的数字,则需要 List数组,这里举的例子没有重复的数字

///

/// 待排数组

/// 待排数组中的最大数,如果可以提供的话

///

static int[] bucket_sort(int[] unsorted, int maxNumber = 97)

{

int[] sorted = new int[maxNumber + 1];

for (int i = 0; i < unsorted.Length; i++)

{

sorted[unsorted[i]] = unsorted[i];

}

return sorted;

}

static void Main(string[] args)

{

int[] x = {49、 38 、 35、 97 、 76、 73 、 27、 49 };

var sorted = bucket_sort(x, 97);

for (int i = 0; i < sorted.Length; i++)

{

if (sorted[i] http://> 0)

Console.WriteLine(sorted[i]);

}

Console.ReadLine();

}

桶排序代价分析

桶排序利用函数的映射关系,减少了几乎所有的比较工作。实际上,桶排序的f(k)值的计算,其作用就相当于快排中划分,已经把大量数据分割成了基本有序的数据块(桶)。然后只需要对桶中的少量数据做先进的比较排序即可。

对N个关键字进行桶排序的时间复杂度分为两个部分:

(1) 循环计算每个关键字的桶映射函数,这个时间复杂度是O(N)。

(2) 利用先进的比较排序算法对每个桶内的所有数据进行排序,其时间复杂度为  ∑ O(Ni*logNi) 。其中Ni 为第i个桶的数据量。

很显然,第(2)部分是桶排序性能好坏的决定因素。尽量减少桶内数据的数量是提高效率的唯一办法(因为基于比较排序的最好平均时间复杂度只能达到O(N*logN)了)。因此,我们需要尽量做到下面两点:

(1) 映射函数f(k)能够将N个数据平均的分配到M个桶中,这样每个桶就有[N/M]个数据量。

(2) 尽量的增大桶的数量。极限情况下每个桶只能得到一个数据,这样就完全避开了桶内数据的“比较”排序操作。当然,做到这一点很不容易,数据量巨大的情况下,f(k)函数会使得桶集合的数量巨大,空间浪费严重。这就是一个时间代价和空间代价的权衡问题了。

对于N个待排数据,M个桶,平均每个桶[N/M]个数据的桶排序平均时间复杂度为:

O(N)+O(M*(N/M)*log(N/M))=O(N+N*(logN-logM))=O(N+N*logN-N*logM)

当N=M时,即极限情况下每个桶只有一个数据时。桶排序的最好效率能够达到O(N)。

总结: 桶排序的平均时间复杂度为线性的O(N+C),其中C=N*(logN-logM)。如果相对于同样的N,桶数量M越大,其效率越高,最好的时间复杂度达到O(N)。 当然桶排序的空间复杂度 为O(N+M),如果输入数据非常庞大,而桶的数量也非常多,则空间代价无疑是昂贵的。此外,桶排序是稳定的。

即以下三点:

1. 桶排序是稳定的

2. 桶排序是常见排序里最快的一种,比快排还要快…大多数情况下

3. 桶排序非常快,但是同时也非常耗空间,基本上是最耗http://空间的一种排序算法

补充:在查找算法中,基于比较的查找算法最好的时间复杂度也是O(logN)。比如折半查找、平衡二叉树、红黑树等。但是Hash表却有O(C)线性级别的查找效率(不冲突情况下查找效率达到O(1))。那么:Hash表的思想和桶排序是不是有一曲同工之妙呢?

实际上,桶排序对数据的条件有特殊要求,如果数组很大的话,那么分配几亿个桶显然是不可能的。所以桶排序有其局限性,适合元素值集合并不大的情况。

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》

希望本文所述对大家java程序设计有所帮助。

[桶——关键字]映射函数

bindex=f(key)   其中,bindex 为桶数组B的下标(即第bindex个桶), k为待排序列的关键字。桶排序之所以能够高效,其关键在于这个映射函数,它必须做到:如果关键字k1

假如待排序列K= {49、 38 、 35、 97 、 76、 73 、 27、 49 }。这些数据全部在1—100之间。因此我们定制10个桶,然后确定映射函数f(k)=k/10。则第一个关键字49将定位到第4个桶中(49/10=4)。依次将所有关键字全部堆入桶中,并在每个非空的桶中进行快速排序后得到如下图所示:

对上图只要顺序输出每个B[i]中的数据就可以得到有序序列了。

算法核心代码如下:

///

/// 桶排序

///

///如果有重复的数字,则需要 List数组,这里举的例子没有重复的数字

///

/// 待排数组

/// 待排数组中的最大数,如果可以提供的话

///

static int[] bucket_sort(int[] unsorted, int maxNumber = 97)

{

int[] sorted = new int[maxNumber + 1];

for (int i = 0; i < unsorted.Length; i++)

{

sorted[unsorted[i]] = unsorted[i];

}

return sorted;

}

static void Main(string[] args)

{

int[] x = {49、 38 、 35、 97 、 76、 73 、 27、 49 };

var sorted = bucket_sort(x, 97);

for (int i = 0; i < sorted.Length; i++)

{

if (sorted[i] http://> 0)

Console.WriteLine(sorted[i]);

}

Console.ReadLine();

}

桶排序代价分析

桶排序利用函数的映射关系,减少了几乎所有的比较工作。实际上,桶排序的f(k)值的计算,其作用就相当于快排中划分,已经把大量数据分割成了基本有序的数据块(桶)。然后只需要对桶中的少量数据做先进的比较排序即可。

对N个关键字进行桶排序的时间复杂度分为两个部分:

(1) 循环计算每个关键字的桶映射函数,这个时间复杂度是O(N)。

(2) 利用先进的比较排序算法对每个桶内的所有数据进行排序,其时间复杂度为  ∑ O(Ni*logNi) 。其中Ni 为第i个桶的数据量。

很显然,第(2)部分是桶排序性能好坏的决定因素。尽量减少桶内数据的数量是提高效率的唯一办法(因为基于比较排序的最好平均时间复杂度只能达到O(N*logN)了)。因此,我们需要尽量做到下面两点:

(1) 映射函数f(k)能够将N个数据平均的分配到M个桶中,这样每个桶就有[N/M]个数据量。

(2) 尽量的增大桶的数量。极限情况下每个桶只能得到一个数据,这样就完全避开了桶内数据的“比较”排序操作。当然,做到这一点很不容易,数据量巨大的情况下,f(k)函数会使得桶集合的数量巨大,空间浪费严重。这就是一个时间代价和空间代价的权衡问题了。

对于N个待排数据,M个桶,平均每个桶[N/M]个数据的桶排序平均时间复杂度为:

O(N)+O(M*(N/M)*log(N/M))=O(N+N*(logN-logM))=O(N+N*logN-N*logM)

当N=M时,即极限情况下每个桶只有一个数据时。桶排序的最好效率能够达到O(N)。

总结: 桶排序的平均时间复杂度为线性的O(N+C),其中C=N*(logN-logM)。如果相对于同样的N,桶数量M越大,其效率越高,最好的时间复杂度达到O(N)。 当然桶排序的空间复杂度 为O(N+M),如果输入数据非常庞大,而桶的数量也非常多,则空间代价无疑是昂贵的。此外,桶排序是稳定的。

即以下三点:

1. 桶排序是稳定的

2. 桶排序是常见排序里最快的一种,比快排还要快…大多数情况下

3. 桶排序非常快,但是同时也非常耗空间,基本上是最耗http://空间的一种排序算法

补充:在查找算法中,基于比较的查找算法最好的时间复杂度也是O(logN)。比如折半查找、平衡二叉树、红黑树等。但是Hash表却有O(C)线性级别的查找效率(不冲突情况下查找效率达到O(1))。那么:Hash表的思想和桶排序是不是有一曲同工之妙呢?

实际上,桶排序对数据的条件有特殊要求,如果数组很大的话,那么分配几亿个桶显然是不可能的。所以桶排序有其局限性,适合元素值集合并不大的情况。

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》

希望本文所述对大家java程序设计有所帮助。

假如待排序列K= {49、 38 、 35、 97 、 76、 73 、 27、 49 }。这些数据全部在1—100之间。因此我们定制10个桶,然后确定映射函数f(k)=k/10。则第一个关键字49将定位到第4个桶中(49/10=4)。依次将所有关键字全部堆入桶中,并在每个非空的桶中进行快速排序后得到如下图所示:

对上图只要顺序输出每个B[i]中的数据就可以得到有序序列了。

算法核心代码如下:

///

/// 桶排序

///

///如果有重复的数字,则需要 List数组,这里举的例子没有重复的数字

///

/// 待排数组

/// 待排数组中的最大数,如果可以提供的话

///

static int[] bucket_sort(int[] unsorted, int maxNumber = 97)

{

int[] sorted = new int[maxNumber + 1];

for (int i = 0; i < unsorted.Length; i++)

{

sorted[unsorted[i]] = unsorted[i];

}

return sorted;

}

static void Main(string[] args)

{

int[] x = {49、 38 、 35、 97 、 76、 73 、 27、 49 };

var sorted = bucket_sort(x, 97);

for (int i = 0; i < sorted.Length; i++)

{

if (sorted[i] http://> 0)

Console.WriteLine(sorted[i]);

}

Console.ReadLine();

}

桶排序代价分析

桶排序利用函数的映射关系,减少了几乎所有的比较工作。实际上,桶排序的f(k)值的计算,其作用就相当于快排中划分,已经把大量数据分割成了基本有序的数据块(桶)。然后只需要对桶中的少量数据做先进的比较排序即可。

对N个关键字进行桶排序的时间复杂度分为两个部分:

(1) 循环计算每个关键字的桶映射函数,这个时间复杂度是O(N)。

(2) 利用先进的比较排序算法对每个桶内的所有数据进行排序,其时间复杂度为  ∑ O(Ni*logNi) 。其中Ni 为第i个桶的数据量。

很显然,第(2)部分是桶排序性能好坏的决定因素。尽量减少桶内数据的数量是提高效率的唯一办法(因为基于比较排序的最好平均时间复杂度只能达到O(N*logN)了)。因此,我们需要尽量做到下面两点:

(1) 映射函数f(k)能够将N个数据平均的分配到M个桶中,这样每个桶就有[N/M]个数据量。

(2) 尽量的增大桶的数量。极限情况下每个桶只能得到一个数据,这样就完全避开了桶内数据的“比较”排序操作。当然,做到这一点很不容易,数据量巨大的情况下,f(k)函数会使得桶集合的数量巨大,空间浪费严重。这就是一个时间代价和空间代价的权衡问题了。

对于N个待排数据,M个桶,平均每个桶[N/M]个数据的桶排序平均时间复杂度为:

O(N)+O(M*(N/M)*log(N/M))=O(N+N*(logN-logM))=O(N+N*logN-N*logM)

当N=M时,即极限情况下每个桶只有一个数据时。桶排序的最好效率能够达到O(N)。

总结: 桶排序的平均时间复杂度为线性的O(N+C),其中C=N*(logN-logM)。如果相对于同样的N,桶数量M越大,其效率越高,最好的时间复杂度达到O(N)。 当然桶排序的空间复杂度 为O(N+M),如果输入数据非常庞大,而桶的数量也非常多,则空间代价无疑是昂贵的。此外,桶排序是稳定的。

即以下三点:

1. 桶排序是稳定的

2. 桶排序是常见排序里最快的一种,比快排还要快…大多数情况下

3. 桶排序非常快,但是同时也非常耗空间,基本上是最耗http://空间的一种排序算法

补充:在查找算法中,基于比较的查找算法最好的时间复杂度也是O(logN)。比如折半查找、平衡二叉树、红黑树等。但是Hash表却有O(C)线性级别的查找效率(不冲突情况下查找效率达到O(1))。那么:Hash表的思想和桶排序是不是有一曲同工之妙呢?

实际上,桶排序对数据的条件有特殊要求,如果数组很大的话,那么分配几亿个桶显然是不可能的。所以桶排序有其局限性,适合元素值集合并不大的情况。

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》

希望本文所述对大家java程序设计有所帮助。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Hibernate对数据库删除、查找、更新操作实例代码
下一篇:判断颜色是否合法的正则表达式(详解)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~