基于Java代码实现游戏服务器生成全局唯一ID的方法汇总

网友投稿 283 2023-07-01


基于Java代码实现游戏服务器生成全局唯一ID的方法汇总

在服务器系统开发时,为了适应数据大并发的请求,我们往往需要对数据进行异步存储,特别是在做分布式系统时,这个时候就不能等待插入数据库返回了取自动id了,而是需要在插入数据库之前生成一个全局的唯一id,使用全局的唯一id,在游戏服务器中,全局唯一的id可以用于将来合服方便,不会出现键冲突。也可以将来在业务增长的情况下,实现分库分表,比如某一个用户的物品要放在同一个分片内,而这个分片段可能是根据用户id的范围值来确定的,比如用户id大于1000小于100000的用户在一个分片内。目前常用的有以下几种:

1,java 自带的UUID.

UUID.randomUUID().toString(),可以通过服务程序本地产生,ID的生成不依赖数据库的实现。

优势:

本地生成ID,不需要进行远程调用。

全局唯一不重复。

水平扩展能力非常好。

劣势:

ID有128 bits,占用的空间较大,需要存成字符串类型,索引效率极低。

生成的ID中没有带Timestamp,无法保证趋势递增,数据库分库分表时不好依赖

2,基于Redis的incr方法

Redis本身是单线程操作的,而incr更保证了一种原子递增的操作。而且支持设置递增步长。

优势:

部署方便,使用简单,只需要调用一个redis的api即可。

可以多个服务器共享一个redis服务,减少共享数据的开发时间。

Redis可以群集部署,解决单点故障的问题。

劣势:

如果系统太庞大的话,n多个服务同时向redis请求,会造成性能瓶颈。

3,来自Flicker的解决方案

这个解决方法是基于数据库自增id的,它使用一个单独的数据库专门用于生成id。详细的大家可以网上找找,个人觉得使用挺麻烦的,不建议使用。

4,Twitter Snowflake

snowflake是twitter开源的分布式ID生成算法,其核心思想是:产生一个long型的ID,使用其中41bit作为毫秒数,10bit作为机器编号,12bit作为毫秒内序列号。这个算法单机每秒内理论上最多可以生成1000*(2^12)个,也就是大约400W的ID,完全能满足业务的需求。

根据snowflake算法的思想,我们可以根据自己的业务场景,产生自己的全局唯一ID。因为Java中long类型的长度是64bits,所以我们设计的ID需要控制在64bits。

优点:高性能,低延迟;独立的应用;按时间有序。

缺点:需要独立的开发和部署。

比如我们设计的ID包含以下信息:

| 41 bits: Timestamp | 3 bits: 区域 | 10 bits: 机器编号 | 10 bits: 序列号 |

产生唯一ID的Java代码:

/**

* 自定义 ID 生成器

* ID 生成规则: ID长达 64 bits

*

* | 41 bits: Timestamp (毫秒) | 3 bits: 区域(机房) | 10 bits: 机器编号 | 10 bits: 序列号 |

*/

public class GameUUID{

// 基准时间

private long twepoch = 1288834974657L; //Thu, 04 Nov 2010 01:42:54 GMT

// 区域标志位数

private final static long regionIdBits = 3L;

// 机器标识位数

private final static long workerIdBits = 10L;

// 序列号识位数

private final static long sequenceBits = 10L;

// 区域标志ID最大值

private final static long maxRegionId = -1L ^ (-1L << regionIdBits);

// 机器ID最大值

private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);

// 序列号ID最大gPzJjB值

private final static long sequenceMask = -1L ^ (-1L << sequenceBits);

// 机器ID偏左移10位

private final static long workerIdShift = sequenceBits;

// 业务ID偏左移20位

private final static long regionIdShift = sequenceBits + workerIdBits;

// 时间毫秒左移23位

private final static long timestampLeftShift = sequenceBits + workerIdBits + regionIdBits;

private static long lastTimestamp = -1L;

private long sequence = 0L;

private final long workerId;

private final long regionId;

public GameUUID(long workerId, long regionId) {

// 如果超出范围就抛出异常

if (workerId > maxWorkerId || workerId < 0) {

throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0");

}

if (regionId > maxRegionId || regionId < 0) {

throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0");

}

this.workerId = workerId;

this.regionId = regionId;

}

public GameUUID(long workerId) {

// 如果超出范围就抛出异常

if (workerId > maxWorkerId || workerId < 0) {

throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0");

}

this.workerId = workerId;

this.regionId = 0;

}

public long generate() {

return this.nextId(false, 0);

}

/**

* 实际产生代码的

*

* @param isPadding

* @param busId

* @return

*/

private synchronized long nextId(boolean isPadding, long busId) {

long timestamp = timeGen();

long paddingnum = regionId;

if (isPadding) {

paddingnum = busId;

}

if (timestamp < lastTimestamp) {

try {

throw new Exception("Clock moved backwards. Refusing to generate id for " + (lastTimestamp - timestamp) + " milliseconds");

} catch (Exception e) {

e.printStackTrace();

}

}

//如果上次生成时间和当前时间相同,在同一毫秒内

if (lastTimestamp == timestamp) {

//sequence自增,因为sequence只有10bit,所以和sequenceMask相与一下,去掉高位

sequence = (sequence + 1) & sequenceMask;

//判断是否溢出,也就是每毫秒内超过1024,当为1024时,与sequenceMask相与,sequence就等于0

if (sequence == 0) {

//自旋等待到下一毫秒

timestamp = tahttp://ilNextMillis(lastTimestamp);

}

} else {

// 如果和上次生成时间不同,重置sequence,就是下一毫秒开始,sequence计数重新从0开始累加,

// 为了保证尾数随机性更大一些,最后一位设置一个随机数

sequence = new SecureRandom().nextInt(10);

}

lastTimestamp = timestamp;

return ((timestamp - twepoch) << timestampLeftShift) | (paddingnum << regionIdShift) | (workerId << workerIdShift) | sequence;

}

// 防止产生的时间比之前的时间还要小(由于NTP回拨等问题),保持增量的趋势.

private long tailNextMillis(final long lastTimestamp) {

long timestamp = this.timeGen();

while (timestamp <= lastTimestamp) {

timestamp = this.timeGen();

}

return timestamp;

}

// 获取当前的时间戳

protected long tigPzJjBmeGen() {

return System.currentTimeMillis();

}

}

使用自定义的这种方法需要注意的几点:

为了保持增长的趋势,要避免有些服务器的时间早,有些服务器的时间晚,需要控制好所有服务器的时间,而且要避免NTP时间服务器回拨服务器的时间;在跨毫秒时,序列号总是归0,会使得序列号为0的ID比较多,导致生成的ID取模后不均匀,所以序列号不是每次都归0,而是归一个0到9的随机数。

上面说的这几种方式我们可以根据自己的需要去选择。在游戏服务器开发中,根据自己的游戏类型选择,比如手机游戏,可以使用简单的redis方式,简单不容易出错,由于这种游戏单服并发新建id量并不太大,完全可以满足需要。而对于大型的世界游戏服务器,它本身就是以分布式为主的,所以可以使用snowflake的方式,上面的snowflake代码只是一个例子,需要自己根据自己的需求去定制,所以有额外的开发量,而且要注意上述所说的注意事项。

以上所述是给大家介绍的基于Java代码实现游戏服务器生成全局唯一ID的方法汇总,希望对大家有所帮助,如果大家有任何疑问请给我留言,会及时回复大家的。在此也非常感谢大家对我们网站的支持!


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:java爬虫Gecco工具抓取新闻实例
下一篇:MyEclipse整合ssh三大框架环境搭载用户注册源码下载
相关文章

 发表评论

暂时没有评论,来抢沙发吧~