学习JVM之java内存区域与异常

网友投稿 210 2023-07-10


学习JVM之java内存区域与异常

一、前言

java是一门跨硬件平台的面向对象高级编程语言,java程序运行在java虚拟机上(JVM),由JVM管理内存,这点是和C++最大区别;虽然内存有JVM管理,但是我们也必须要理解JVM是如何管理内存的;JVM不是只有一种,当前存在的虚拟机可能达几十款,但是一个符合规范的虚拟机设计是必须遵循《java 虚拟机规范》的,本文是基于HotSpot虚拟机描述,对于和其它虚拟机有区别会提到;本文主要描述JVM中内存是如何分布、java程序的对象是如何存储访问、各个内存区域可能出现的异常。

二、JVM中内存分布(区域)

JVM在执行java程序的时会把内存分为多个不同的数据区域进行管理,这些区域有着不一样的作用、创建和销毁时间,有的区域是在JVM进程启动时分配,有的区域则与用户线程(程序本身的线程)的生命周期相关;按照JVM规范,JVM管理的内存区域分为以下几个运行时数据区域:

1、虚拟机栈

这块内存区域是线程私有的,随线程启动而创建、线程销毁而销毁;虚拟机栈描述的java方法执行的内存模型:每个方法在执行开始会创建一个栈帧(Stack Frame),用于存储局部变量表、操作数栈,动态链接、方法出口等。每个方法的调用执行和返回结束,都对应有一个栈帧在虚拟机栈入栈和出栈的过程。

局部变量表顾名思义是存储局部变量的内存区域:存放编译器期可知的基本数据类型(8种java基本数据类型)、引用类型、返回地址;其中占64位的long和double类型数据会占用2个局部变量空间,其它数据类型只占用1个;由于类型大小确定、变量数量编译期可知,所以局部变量表在创建时是已知大小,这部分内存空间能在编译期完成分配,并且在方法运行期间不需要修改局部变量表大小。

在虚拟机规范中,对这块内存区域规定了两种异常:

1.如果线程请求的栈深度大于虚拟机所允许的深度(?),将抛出StackOverflowError异常;

2.如果虚拟机可以动态扩展,当扩展是无法申请到足够内存,将抛出OutOfMemory异常;

2、本地方法栈

本地方法栈同样也是线程私有,而且和虚拟机栈作用几乎是一样的:虚拟机栈是为java方法执行提供出入栈服务,而本地方法栈则是为虚拟机执行Native方法提供服务。

在虚拟机规范中,对本地方法栈实现方式没有强制规定,可以由具体虚拟机自由实现;HotSpot虚拟机是直接把虚拟机栈和本地方法栈合二为一实现;对于其他虚拟机实现这一块的方法,读者有兴趣可以自行查询相关资料;

与虚拟机栈一样,本地方法栈同样会抛出StackOverflowError和OutOfMemory异常。

3、程序计算器

程序器计算器也是线程私有的内存区域,可以认为是线程执行字节码的行号指示器(指向一条指令),java执行时通过改变计数器的值来获的下一条需要执行的指令,分支、循环、跳转、异常处理、线程恢复等执行顺序都要依赖这个计数器来完成。虚拟机的多线程是通过轮流切换并分配处理器执行时间实现,处理器(对多核处理器来说是一个内核)在一个时刻只能在执行一条命令,因此线程执行切换后需要恢复到正确的执行位置,每个线程都有一个独立的程序计算器。

在执行一个java方法时,这个程序计算器记录(指向)当前线程正在执行的字节码指令地址,如果正在执行的是Native方法,这个计算器的值为undefined,这是因为HotSpot虚拟机线程模型是原生线程模型,即每个java线程直接映射OS(操作系统)的线程,执行Native方法时,由OS直接执行,虚拟机的这个计数器的值是无用的;由于这个计算器是一块占用空间很小的内存区域,为线程私有,不需要扩展,是虚拟机规范中唯一一个没有规定任何OutOfMemoryError异常的区域。

4、堆内存(Heap)

java 堆是线程共享的内存区域,可以说是虚拟机管理的内存最大的一块区域,在虚拟机启动时创建;java堆内存主要是存储对象实例,几乎所有的对象实例(包括数组)都是存储在这里,因此这也是垃圾回收(GC)最主要的内存区域,有关GC的内容这里不做描述;

按照虚拟机规范,java堆内存可以处于不连续的物理内存中,只要逻辑上是连续的,并且空间扩展也没有限制,既可以是固定大小,也可以是棵扩展的;如果堆内存没有足够的空间完成实例分配,而且也无法扩展,将会抛出OutOfMemoryError异常。

5、方法区

方法区和堆内存一样,是线程共享的内存区域;存储已经被虚拟机加载的类型信息、常量、静态变量、即时编译期编译后的代码等数据;虚拟机规范对于方法区的实现没有过多限制,和堆内存一样不需要连续的物理内存空间,大小可以固定或者CkLQHtLo可扩展,还可以选择不实现垃圾回收;当方法区无法满足内存分配需求时将会抛出OutOfMemoryError异常。

6、直接内存

直接内存并不是虚拟机管理内存的一部分,但是这部分内存还是可能被频繁用到;在java程序使用到Native方法时(如 NIO,有关NIO这里不做描述),可能会直接在堆外分配内存,但是内存总空间大小是有限的,也会遇到内存不足的情况,一样会抛出OutOfMemoryError异常。

二、实例对象存储访问

上面第一点对虚拟机各区域内存有个总体的描述,对于每个区域,都存在数据是如何创建、布局、访问的问题,我们以最常使用的的堆内存为例基于HotSpot说下这三个方面。

1、实例对象创建

当虚拟机执行到一条new指令时,首先首先从常量池定位这个创建对象的类符号引用、判断检查类是否已经加载初始化,如果没有加载,则执行类加载初始化过程(关于类加载,这里不做描述),如果这个类找不到,则抛出常见的ClassNotFoundException异常;

通过类加载检查后,就是实际为对象分配物理内存(堆内存),对象所需的内存空间大小是由对应的类确定的,类加载后,这个类的对象所需的内存空间是固定的;为对象分配内存空间,相当于要从堆中划分出一块出来分配给这个对象;

根据内存空间是否连续(已分配和未分配是区分为完整的两部分)分为两种分配内存方式:

1. 连续的内存:已分配和未分配中间使用一个指针作为分界点,对象内存分配只需要指针向未分配内存段移动一段空间大小即可;这种方式称 为“指针碰撞”。

2. 非连续内存:虚拟机需要维护(记录)一个列表,记录堆中那些内存块的没有分配的,在分配对象内存时从中选择一块适合大小的内存区域 分配给对象,并更新这个列表;这种方式称为“空闲列表”。

对象内存的分配也会遇到并发的问题,虚拟机使用两种方案解决这个线程安全问题:第一使用CAS(Compare and set)+识别重试,保证分配操作的原子性;第二是内存分配按照线程划分不同的空间,即每个线程在堆中预先分配好一块线程私有的内存,称为本地线程分配缓存区(Thread Local Allocation Buffer,TLAB);那个线程要分配内存时,直接从TLAB中分配出来,只有当线程的TLAB分配完需要重新分配,才需要同步操作从堆中分配,这个方案有效的减少线程间对象分配堆内存的并发情况出现;虚拟机是否使用TLAB这种方案,是通过JVM参数 -XX:+/-UseTLAB 设定。

完成内存分配后,除对象头信息外,虚拟机会将分配到的内存空间初始化为零值,保证对象实例的字段http://可以不赋值就可直接使用到数据类型对应的零值;紧接着,执行 init 方法按照代码完成初始化,才完成一个实例对象的创建;

2、对象在内存的布局

在HotSpot虚拟机中,对象在内存分为3个部分:对象头(Header)、实例数据(Instance Data)、对齐填充(Padding):

其中对象头又分两个部分:一部分存储对象运行时数据,包括哈希码、垃圾回收分代年龄、对象锁状态、线程持有的锁、偏向线程ID、偏向 时间戳等;在32位和64位虚拟机中,这部分数据分别占用32位和64位;由于运行时数据较多,32位或者64位不足以完全存储全部数据,所以 这部分设计为非固定格式存储运行时数据,而是根据对象的状态不同而使用不同位来存储数据;另一部分存储对象类型指针,指向这个对象的 类,但这并不是必须的,对象的类元数据不一定要使用这部分存储来确定(下面会讲到);

实例数据则是存储对象定义的各种类型数据的内容,而这些程序定义的数据并不是完全按照定义的顺序存储的,它们是按照虚拟机分配策略和定义的顺序确定:long/double、int、short/char、byte/boohttp://lean、oop(Ordinary Object Ponint),可以看出,策略是按照类型占位多少分配的,相同的类型会在一起分配内存;而且,在满足这些前提条件下,父类变量顺序先于子类;

而对象填充这部分不是一定会存在,它仅仅是起到占位对齐的作用,在HotSpot虚拟机内存管理是按照8字节为单位管理,因此当分配完内存后,对象大小不是8的倍数,则由对齐填充补全;

3、对象的访问

在java程序中,我们创建了一个对象,实际上我们得到一个引用类型变量,通过这个变量来实际操作一个在堆内存中的实例;在虚拟机规范中,只规定了引用(reference)类型是指向对象的引用,没有规定这个引用是如何去定位、访问到堆中实例的;目前主流的虚拟机中,主要有两种方式实现对象的访问:

1. 句柄方式:堆内存中划分出一块区域作为句柄池,引用变量中存储的是对象的句柄地址,而句柄中存储了示例对象和对象类型的具体地址信息,因此对象头中可以不包含对象的类型:

2. 指针直接访问:引用类型直接存储的是实例对象在堆中的地址信息,但是这就必须要求实例对象的布局中,对象头必须包含对象的类型:

这两种访问方式各有优势:当对象地址改变(内存整理、垃圾回收),句柄方式访问对象,引用变量不需要改变,只需要改变句柄中的对象地址值就可;而使用指针直接访问方式,则需要修改这个对象全部的引用;但是指针方式,可以减少一次寻址操作,在大量对象访问的情况下,这种方式的优势比较明显;HotSpot虚拟机就是使用这中指针直接访问方式。

三、运行时内存异常

java程序内存在运行时主要可能发生两种异常情况:OutOfMemoryError、StackOverflowError;那个内存区域会发生什么异常,前面已经简单提到,除了程序计数器已外,其他内存区域都会发生;本节主要通过实例代码演示各个内存区域发生异常的情况,其中会使用到许多常用的虚拟机启动参数以便更好说明情况。(如何使用参数运行程序这里不做描述)

1、java堆内存溢出

堆内存溢出发生在堆容量达到最大堆容量后创建对象情况下,在程序中只要不断的创建对象,并且保证这些对象不会被垃圾回收:

/**

* 虚拟机参数:

* -Xms20m 最小堆容量

* -Xmx20m 最大堆容量

* @author hwz

*

*/

public class HeadOutOfMemoryError {

public static void main(String[] args) {

//使用容器保存对象,保证对象不被垃圾回收

List listToHoldObj = new ArrayList();

while(true) {

//不断创建对象并加入容器中

listToHoldObj.add(new HeadOutOfMemoryError());

}

}

}

这里可以加上虚拟机参数:-XX:HeapDumpOnOutOfMemoryError,在发送OOM异常的时候让虚拟机转储当前堆的快照文件,后续可以通过这个文件分词异常问题,这个不做详细描述,后续再写个博客详细描述使用MAT工具分析内存问题。

2、虚拟机栈和本地方法栈溢出

在HotSpot虚拟机中,这两个方法栈是没有一起实现的,根据虚拟机规范,这两块内存区域会发生这两种异常:

1. 如果线程请求栈深度大于虚拟机允许的最大深度,抛出StackOverflowError异常;

2. 如果虚拟机在扩展栈空间时,无法申请大内存空间,将抛出OutOfMemoryError异常;

这两种情况实际上是存在重叠的:当栈空间无法继续分配是,到底是内存太小还是已使用的栈深度太大,这个无法很好的区分。

使用两种方式测试代码

1. 使用-Xss参数减少栈大小,无限递归调用一个方法,无限加大栈深度:

/**

* 虚拟机参数:

* -Xss128k 栈容量

* @author hwz

*

*/

public class StackOverflowError {

private int stackDeep = 1;

/**

* 无限递归,无限加大调用栈深度

*/

public void recursiveInvoke() {

stackDeep++;

recursiveInvoke();

}

public static void main(String[] args) {

StackOverflowError soe = new StackOverflowError();

try {

soe.recursiveInvoke();

} catch (Throwable e) {

System.out.println("stack deep = " + soe.stackDeep);

throw e;

}

}

}

方法中定义大量本地变量,增加方法栈中本地变量表的长度,同样无限递归调用:

/**

* @author hwz

*

*/

public class StackOOMError {

private int stackDeep = 1;

/**

* 定义大量本地变量,增大栈中本地变量表

* 无限递归,无限加大调用栈深度

*/

public void recursiveInvoke() {

Double i;

Double i2;

//.......此处省略大量变量定义

stackDeep++;

recursiveInvoke();

}

public static void main(String[] args) {

StackOOMError soe = new StackOOMError();

try {

soe.recursiveInvoke();

} catch (Throwable e) {

System.out.println("stack deep = " + soe.stackDeep);

throw e;

}

}

}

以上代码测试说明,无论是帧栈太大还是虚拟机容量太小,当内存无法分配时,抛出的都是StackOverflowError异常;

3、方法区和运行时常量池溢出

这里先描述一下String的intern方法:如果字符串常量池已经包含一个等于此String对象的字符串,则返回代表这个字符串的String对象,否则将此String对象添加到常量池中,并返回此String对象的引用;通过这个方法不断在常量池中增加String对象,导致溢出:

/**

* 虚拟机参数:

* -XX:PermSize=10M 永久区大小

* -XX:MaxPermSize=10M 永久区最大容量

* @author hwz

*

*/

public class RuntimeConstancePoolOOM {

public static void main(String[] args) {

//使用容器保存对象,保证对象不被垃圾回收

List list = new ArrayList();

//使用String.intern方法,增加常量池的对象

for (int i=1; true; i++) {

list.add(String.valueOf(i).intern());

}

}

}

但是这段测试代码在JDK1.7下没有发生运行时常量池溢出,在JDK1.6倒是会发生,为此再写一段测试代码验证这个问题:

/**

* String.intern方法在不同JDK下测试

* @author hwz

*

*/

public class StringInternTest {

public static void main(String[] args) {

String str1 = new StringBuilder("test").append("01").toString();

System.out.println(str1.intern() == str1);

String str2 = new StringBuilder("test").append("02").toString();

System.out.println(str2.intern() == str2);

}

}

在JDK1.6下运行结果为:false、false;

在JDK1.7下运行结果为:true、true;

原来在JDK1.6中,intern()方法把首次遇到的字符串实例复制到永久代,反回的是永久代中的实例的引用,而有StringBuilder创建的字符串实例在堆中,所以不相等;

而在JDK1.7中,intern()方法不会复制实例,只是在常量池记录首次出现的实例的引用,因此intern返回的引用和StringBuilder创建的实例是同一个,所以返回true;

所以常量池溢出的测试代码不会发生常量池溢出异常,而是在不断运行后可能发生堆内存不足溢出异常;

那要测试方法区溢出,只要不断往方法区加入东西就行了,比如类名、访问修饰符、常量池等。我们可以让程序加载大量的类去不断填充方法区从而导致溢出,这个我们使用CGLib直接操作字节码生成大量动态类:

/**

* 方法区内存溢出测试类

* @author hwz

*

*/

public class MethodAreaOOM {

public static void main(String[] args) {

//使用GCLib无限动态创建子类

while (true) {

Enhancer enhancer = new Enhancer();

enhancer.setSuperclass(MAOOMClass.class);

enhancer.setUseCache(false);

enhancer.setCallback(new MethodInterceptor() {

@Override

public Object intercept(Object obj, Method method, Object[] args,

MethodProxy proxy) throws Throwable {

return proxy.invokeSuper(obj, args);

}

});

enhancer.create();

}

}

static class MAOOMClass {}

}

通过VisualVM观察可以看到,JVM加载类的数量和PerGen的使用成直线上升:

4、直接内存溢出

直接内存的大小可以通过虚拟机参数设定:-XX:MaxDirectMemorySize,要使直接内存溢出,只需要不断的申请直接内存即可,以下同Java NIO 中直接内存缓存测试:

/**

* 虚拟机参数:

* -XX:MaxDirectMemorySize=30M 直接内存大小

* @author hwz

*

*/

public class DirectMemoryOOm {

public static void main(String[] args) {

List buffers = new ArrayList();

int i = 0;

while (true) {

//打印当前第几次

System.out.println(++i);

//通过不断申请直接缓存区内存消耗直接内存

buffers.add(ByteBuffer.allocateDirect(1024*1024)); //每次申请1M

}

}

}

在循环中,每次申请1M直接内存,设置最大直接内存为30M,程序运行到31次时抛出异常:java.lang.OutOfMemoryError: Direct buffer memory

四、总结

以上就是本文的全部内容,本文主要描述JVM中内存的布局结构、对象存储和访问已经各个内存区域可能出现的内存异常;主要参考书目《深入理解Java虚拟机(第二版)》,如有不正确之处,还请在评论中指出;谢谢大家对我们的支持。


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Select下拉框模糊查询功能实现代码
下一篇:MyBatis如何使用(二)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~