zookeeper python接口实例详解
243
2023-07-11
JAVA 实现二叉树(链式存储结构)
二叉树的分类(按存储结构)
树的分类(按存储结构)
顺序存储(用数组表示(静态二叉树))
链式存储
一些特别的二叉根:
完全二叉树,平衡二叉树(AVL),线索二叉树,三叉的(带父亲的指针)
二叉搜索树或者叫二叉 查找树(BST)
所用二叉树如下图所示:
二叉树的java实现(链式存储结构)
class TreeNode {
private int key = 0;
private String data = null;
private boolean isVisted = false;
private TreeNode leftChild = null;
private TreeNode rightChild = null;
public TreeNode(){
}
public TreeNode(int key, String data){
this.key = key;
this.data = data;
this.leftChild = null;
this.rightChild = null;
}
public int getKey() {
return key;
}
public void setKey(int key) {
this.key = key;
}
public String getData() {
return data;
}
public void setData(String data) {
this.data = data;
}
public TreeNode getLeftChild() {
return leftChild;
}
public void setLeftChild(TreeNode leftChild) {
this.leftChild = leftChild;
}
public TreeNode getRightChild() {
return rightChild;
}
public void setRightChild(TreeNode rightChild) {
this.rightChild = rightChild;
}
public boolean isVisted() {
return isVisted;
}
public void setVisted(boolean isVisted) {
this.isVisted = isVisted;
}
}
public class BinaryTree {
private TreeNode root = null;
public BinaryTree() {
root = new TreeNode(1, "rootNode(A)");
}
public void createBinTree(TreeNode root){
//手动的创建(结构如图所示)
TreeNode newNodeB = new TreeNode(2,"B");
TreeNode newNodeC = new Treehttp://Node(3,"C");
TreeNode newNodeD = new TreeNode(4,"D");
TreeNode newNodeE = new TreeNode(5,"E");
TreeNode newNodeF = new TreeNode(6,"F");
root.setLeftChild(newNodeB);
root.setRightChild(newNodeC);
root.getLeftChild().setLeftChild(newNodeD);
root.getLeftChild().setRightChild(newNodeE);
root.getRightChild().setRightChild(newNodeF);
}
public boolean IsEmpty() {
// 判二叉树空否
return root == null;
}
public int Height() {
// 求树高度
return Height(root);
}
public int Height(TreeNode subTree) {
if (subTree == null)
return 0; //递归结束:空树高度为0
else {
int i = Height(subTree.getLeftChild());
int j = Height(subTree.getRightChild());
return (i < j) ? j + 1 : i + 1;
}
}
public int Size() {
// 求结点数
return Size(root);
}
public int Size(TreeNode subTree) {
if (subTree == null)
return 0;
else {
return 1 + Size(subTree.getLeftChild())
+ Size(subTree.getRightChild());
}
}
public TreeNode Parent(TreeNode element) {
//返回双亲结点
return (root == null || root == element) ? null : Parent(root, element);
}
public TreeNode Parent(TreeNode subTree, TreeNode element) {
if (subTree == null)
return null;
if (subTree.getLeftChild() == element
|| subTree.getRightChild() == element)
//找到, 返回父结点地址
return subTree;
TreeNode p;
//先在左子树中找,如果左子树中没有找到,才到右子树去找
if ((p = Parent(subTree.getLeftChild(), element)) != null)
//递归在左子树中搜索
return p;
else
//递归在左子树中搜索
return Parent(subTree.getRightChild(), element);
}
public TreeNode LeftChild(TreeNode element) {
//返回左子树
return (element != null) ? element.getLeftChild() : null;
}
public TreeNode RightChild(TreeNode element) {
//返回右子树
return (element != null) ? element.getRightChild() : null;
}
public TreeNode getRoot() {
//取得根结点
return root;
}
public void destroy(TreeNode subTree) {
//私有函数: 删除根为subTree的子树
if (subTree != null) {
destroy(subTree.getLeftChild()); //删除左子树
destroy(subTree.getRightChild()); //删除右子树
//delete subTree; //删除根结点
subTree = null;
}
}
public void Traverse(TreeNode subTree) {
System.out.println("key:" + subTree.getKey() + "--name:"
+ subTree.getData());
Traverse(subTree.getLeftChild());
Traverse(subTree.getRightChild());
}
public void PreOrder(TreeNode subTree) {
//先根
if (subTree != null) {
visted(subTree);
PreOrder(subTree.getLeftChild());
PreOrder(subTree.getRightChild());
}
}
puhttp://blic void InOrder(TreeNode subTree) {
//中根
if (subTree != null) {
InOrder(subTree.getLeftChild());
visted(subTree);
InOrder(subTree.getRightChild());
}
}
public void PostOrder(TreeNode subTree) {
//后根
if (subTree != null) {
PostOrder(subTree.getLeftChild());
PostOrder(subTree.getRightChild());
visted(subTree);
}
}
public void LevelOrder(TreeNode subTree) {
//水平遍边
}
public boolean Insert(TreeNode element){
//插入
return true;
}
public boolean Find(TreeNode element){
//查找
return true;
}
public void visted(TreeNode subTree) {
subTree.setVisted(true);
System.out.println("key:" + subTree.getKey() + "--name:"
+ subTree.getData());
}
public static void main(String[] args) {
BinaryTree bt = new BinaryTree();
bt.createBinTree(bt.root);
System.out.println("the size of the tree is " + bt.Size());
System.out.println("the height of the tree is " + bt.Height());
System.out.println("*******先根(前序)[ABDECF]遍历*****************");
bt.PreOrder(bt.root);
System.out.println("*******中根(中序)[DBEACF]遍历*****************");
bt.InOrder(bt.root);
System.out.println("*******后根(后序)[DEBFCA]遍历*****************");
bt.PostOrder(bt.root);
http://}
}
结果输出:
the size of the tree is 6
the height of the tree is 3
*******先根(前序)[ABDECF]遍历*****************
key:1--name:rootNode(A)
key:2--name:B
key:4--name:D
key:5--name:E
key:3--name:C
key:6--name:F
*******中根(中序)[DBEACF]遍历*****************
key:4--name:D
key:2--name:B
key:5--name:E
key:1--name:rootNode(A)
key:3--name:C
key:6--name:F
*******后根(后序)[DEBFCA]遍历*****************
key:4--name:D
key:5--name:E
key:2--name:B
key:6--name:F
key:3--name:C
key:1--name:rootNode(A)
希望本文对学习JAVA程序设计的同学有所帮助。
版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。
发表评论
暂时没有评论,来抢沙发吧~