Java多线程程序中synchronized修饰方法的使用实例

网友投稿 163 2023-07-14


Java多线程程序中synchronized修饰方法的使用实例

在java 5以前,是用synchronized关键字来实现锁的功能。

synchronized关键字可以作为方法的修饰符(同步方法),也可作用于函数内的语句(同步代码块)。

掌握synchronized,关键是要掌握把那个东西作为锁。对于类的非静态方法(成员方法)而言,意味着要取得对象实例的锁;对于类的静态方法(类方法)而言,要取得类的Class对象的锁;对于同步代码块,要指定取得的是哪个对象的锁。同步非静态方法可以视为包含整个方法的synchronized(this) { … }代码块。

不管是同步代码块还是同步方法,每次只有一个线程可以进入(在同一时刻最多只有一个线程执行该段代码。),如果其他线程试图进入(不管是同一同步块还是不同的同步块),jvm会将它们挂起(放入到等锁池中)。这种结构在并发理论中称为临界区(critical section)。

在jvm内部,为了提高效率,同时运行的每个线程都会有它正在处理的数据的缓存副本,当我们使用synchronzied进行同步的时候,真正被同步的是在不同线程中表示被锁定对象的内存块(副本数据会保持和主内存的同步,现在知道为什么要用同步这个词汇了吧),简单的说就是在同步块或同步方法执行完后,对被锁定的对象做的任何修改要在释放锁之前写回到主内存中;在进入同步块得到锁之后,被锁定对象的数据是从主内存中读出来的,持有锁的线程的数据副本一定和主内存中的数据视图是同步的 。

下面举具体的例子来说明synchronized的各种情况。

synchronized同步方法

首先来看同步方法的例子:

public class SynchronizedTest1 extends Thread

{

private synchronized void testSynchronizedMethod()

{

for (int i = 0; i < 10; i++)

{

System.out.println(Thread.currentThread().getName()

+ " testSynchronizedMethod:" + i);

try

{

Thread.sleep(100);

}

catch (InterruptedException e)

{

e.printStackTrace();

}

}

}

@Override

public void run()

{

testSynchronizedMethod();

}

public static void main(String[] args)

{

SynchronizedTest1 t = new SynchronizedTest1();

t.start();

t.testSynchronizedMethod();

}

}

运行该程序输出结果为:

main testSynchronizedMethod:0

main testSynchronizedMethod:1

main testSynchronizedMethod:2

main testSynchronizedMethod:3

main testSynchronizedMethod:4

main testSynchronizedMethod:5

main testSynchronizedMethod:6

main testSynchronizedMethod:7

main testSynchronizedMethod:8

main testSynchronizedMethod:9

Thread-0 testSynchronizedMethod:0

Thread-0 testSynchronizedMethod:1

Thread-0 testSynchronizedMethod:2

Thread-0 testSynchronizedMethod:3

Thread-0 testSynchronizedMethod:4

Thread-0 testSynchronizedMethod:5

Thread-0 testSynchronizedMethod:6

Thread-0 testSynchronizedMethod:7

Thread-0 testSynchronizedMethod:8

Thread-0 testSynchronizedMethod:9

可以看到testSynchronizedMethod方法在两个线程之间同步执行。

如果此时将main方法修改为如下所示,则两个线程并不能同步执行,因为此时两个线程的同步监视器不是同一个对象,不能起到同步的作用。

public static void main(String[] args)

{

Thread t = new SynchronizedTest1();

t.start();

Thread t1 = new SynchronizedTest1();

t1.start();

}

此时输出结果如下所示:

Thread-0 testSynchronizedMethod:0

Thread-1 testSynchronizedMethod:0

Thread-0 testSynchronizedMethod:1

Thread-1 testSynchronizedMethod:1

Thread-0 testSynchronizedMethod:2

Thread-1 testSynchronizedMethod:2

Thread-0 testSynchronizedMethod:3

Thread-1 testSynchronizedMethod:3

Thread-0 testSynchronizedMethod:4

Thread-1 testSynchronizedMethod:4

Thread-0 testSynchronizedMethod:5

Thread-1 testSynchronizedMethod:5

Thread-0 testSynchronizedMethod:6

Thread-1 testSynchronizedMethod:6

Thread-0 testSynchronizedMethod:7

Thread-1 testSynchronizedMethod:7

Thread-0 testSynchronizedMethod:8

Thread-1 testSynchronizedMethod:8

Thread-0 testSynchronizedMethod:9

Thread-1 testSynchronizedMethod:9

若想修改后的main方法能够在两个线程之间同步运行,需要将testSynchronizedMethod方法声明为静态方法,这样两个线程的监视器是同一个对象(类对象),能够同步执行。修改后的代码如下所示:

public class SynchronizedTest1 extends Thread

{

private static synchronized void testSynchronizedMethod()

{

for (int i = 0; i < 10; i++)

{

System.out.println(Thread.currentThread().getName()

+ " testSynchronizedMethod:" + i);

try

{

Thread.sleep(100);

}

catch (InterruptedException e)

{

e.printStackTrace();

}

}

}

@Override

public void run()

{

testSynchronizedMethod();

}

public static void main(String[] args)

{

Thread t = new SynchronizedTest1();

t.start();

Thread t1 = new SynchronizedTest1();

t1.start();

}

}

输出结果如下:

Thread-0 testSynchronizedMethod:0

Thread-0 testSynchronizedMethod:1

Thread-0 testSynchronizedMethod:2

Thread-0 testSynchronizedMethod:3

Thread-0 testSynchronizedMethod:4

Thread-0 testSynchronizedMethod:5

Thread-0 testSynchronizedMethod:6

Thread-0 testSynchronizedMethod:7

Thread-0 testSynchronizedMethod:8

Thread-0 testSynchronizedMethod:9

Thread-1 testSynchronizedMethod:0

Thread-1 testSynchronizedMethod:1

Thread-1 testSynchronizedMethod:2

Thread-1 testSynchronizedMethod:3

Thread-1 testSynchronizedMethod:4

Thread-1 testSynchronizedMethod:5

Thread-1 testSynchronizedMethod:6

Thread-1 testSynchronizedMethod:7

Thread-1 testSynchronizedMethod:8

Thread-1 testSynchronizedMethod:9

同步块的情况与同步方法类似,只是同步块将同步控制的粒度缩小,这样能够更好的发挥多线程并行执行的效率。

使用this对象控制同一对象实例之间的同步:

public class SynchronizedTest2 extends Thread

{

private void testSynchronizedBlock()

{

synchronized (this)

{

for (int i = 0; i < 10; i++)

{

System.out.println(Thread.currentThread().getName()

+ " testSynchronizedBlock:" + i);

try

{

Thread.sleep(100);

}

catch (InterruptedException e)

{

e.printStackTrace();

}

}

}

}

@Override

public void run()

{

testSynchronizedBlock();

}

public static void main(String[] args)

{

SynchronizedTest2 t = new SynchronizedTest2();

t.start();

t.testSynchronizedBlock();

}

}

输出结果:

main testSynchronizedBlock:0

main testSynchronizedBlock:1

main testSynchronizedBlock:2

main testSynchronizedBlock:3

main testSynchronizedBlock:4

main testSynchronizedBlock:5

main testSynchronizedBlock:6

main testSynchronizedBlock:7

main testSynchronizedBlock:8

main testSynchronizedBlock:9

Thread-0 testSynchronizedBlock:0

Thread-0 testSynchronizedBlock:1

Thread-0 testSynchronizedBlock:2

Thread-0 testSynchronizedBlock:3

Thread-0 testSynchronizedBlock:4

Thread-0 testSynchronizedBlock:5

Thread-0 testSynchronizedBlock:6

Thread-0 testSynchronizedBlock:7

Thread-0 testSynchronizedBlock:8

Thread-0 testSynchronizedBlock:9

使用class对象控制不同实例之间的同步:

public class SynchronizedTest2 extends Thread

{

private void testSynchronizedBlock()

{

synchronized (SynchronizedTest2.class)

{

for (int i = 0; i < 10; i++)

{

System.out.println(Thread.currentThread().getName()

+ " testSynchronizedBlock:" + i);

try

{

Thread.sleep(100);

}

catch (InterruptedException e)

{

e.printStackTrace();

}

}

}

}

@Override

public void run()

{

testSynchronizedBlock();

}

public static void main(String[] args)

{

Thread t = new SynchronizedTest2();

t.start();

Thread t2 = new SynchronizedTest2();

t2.start();

}

}

输出结果:

Thread-0 testSynchronizedBlock:0

Thread-0 testSynchronizedBlock:1

Thread-0 testSynchronizedBlock:2

Thread-0 testSynchronizedBlock:3

Thread-0 testSynchronizedBlock:4

Thread-0 testSynchronizedBlock:5

Thread-0 testSynchronizedBlock:6

Thread-0 testSynchronizedBlock:7

Thread-0 testSynchronizedBlock:8

Thread-0 testSynchronizedBlock:9

Thread-1 testSynchronizedBlock:0

Thread-1 testSynchronizedBlock:1

Thread-1 testSynchronizedBlock:2

Thread-1 testSynchronizedBlock:3

Thread-1 testSynchronizedBlock:4

Thread-1 testSynchronizedBlock:5

Thread-1 testSynchronizedBlock:6

Thread-1 testSynchronizedBlock:7

Thread-1 testSynchronizedBlock:8

Thread-1 testSynchronizedBlock:9

使用synchronized关键字进行同步控制时,一定要把握好对象监视器,只有获得监视器的进程可以运行,其它都需要等待获取监视器。任何一个非null的对象都可以作为对象监视器,当synchronized作用在方法上时,锁住的便是对象实例(this);当作用在静态方法时锁住的便是对象对应的Class实例

两个线程同时访问一个对象的同步方法

当两个并发线程访问同一个对象的同步方法时,只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个以后才能执行。

public class TwoThread {

public static void main(String[] args) {

final TwoThread twoThread = new TwoThread();

Thread t1 = new Thread(new Runnable() {

public void run() {

twoThread.syncMethod();

}

}, "A");

Thread t2 = new Thread(new Runnable() {

public void run() {

twoThread.syncMethod();

}

}, "B");

t1.start();

t2.start();

}

public synchronized void syncMethod() {

for (int i = 0; i < 5; i++) {

System.out.println(Thttp://hread.currentThread().getName() + " : " + i);

try {

Thread.sleep(500);

} catch (InterruptedException ie) {

}

}

}

}

输出结果:

A : 0

A : 1

A : 2

A : 3

A : 4

B : 0

B : 1

B : 2

B : 3

B : 4

两个线程访问的是两个对象的同步方法

这种情况下,synchronized不起作用,跟普通的方法一样。因为对应的锁是各自的对象。

public clashttp://s TwoObject {

public static void main(String[] args) {

final TwoObject object1 = new TwoObject();

Thread t1 = new Thread(new Runnable() {

public void run() {

object1.syncMethod();

}

}, "Object1");

t1.start();

final TwoObject object2 = new TwoObject();

Thread t2 = new Thread(new Runnable() {

public void run() {

object2.syncMethod();

}

}, "Object2");

t2.start();

}

public synchronized void syncMethod() {

for (int i = 0; i < 5; i++) {

System.out.println(Thread.currentThread().getName() + " : " + i);

try {

Thread.sleep(500);

} catch (InterruptedException ie) {

}

}

}

}

其中一种可能的输出结果:

Object2 : 0

Object1 : 0

Object1 : 1

Object2 : 1

Object2 : 2

Object1 : 2

Object2 : 3

Object1 : 3

Object1 : 4

Object2 : 4

两个线程访问的是synchronized的静态方法

这种情况,由于锁住的是Class,在任何时候,该静态方法只有一个线程可以执行。

同时访问同步方法与非同步方法

当一个线程访问对象的一个同步方法时,另一个线程仍然可以访问该对象中的非同步方法。

public class SyncAndNoSync {

public static void main(String[] args) {

final SyncAndNoSync syncAndNoSync = new SyncAndNoSync();

Thread t1 = new Thread(new Runnable() {

public void run() {

syncAndNoSync.syncMethod();

}

}, "A");

t1.start();

Thread t2 = new Thread(new Runnable() {

public void run() {

syncAndNoSync.noSyncMethod();

}

}, "B");

t2.start();

}

public synchronized void syncMethod() {

for (int i = 0; i < 5; i++) {

System.out.println(Thread.currentThread().getName() + " at syncMethod(): " + i);

try {

Thread.sleep(500);

} catch (InterruptedException ie) {

}

}

}

public void noSyncMethod() {

for (int i = 0; i < 5; i++) {

System.out.println(Thread.currentThread().getName() + " at noSyncMethod(): " + i);

try {

Thread.sleep(500);

} catch (InterruptedException ie) {

}

}

}

}

一种可能的输出结果:

B at noSyncMethod(): 0

A at syncMethod(): 0

B at noSyncMethod(): 1

A at syncMethod(): 1

B at noSyncMethod(): 2

A at syncMethod(): 2

B at noSyncMethod(): 3

A at syncMethod(): 3

A at syncMethod(): 4

B at noSyncMethod()http://: 4

访问同一个对象的不同同步方法

当一个线程访问一个对象的同步方法A时,其他线程对该对象中所有其它同步方法的访问将被阻塞。因为第一个线程已经获得了对象锁,其他线程得不到锁,则虽然是访问不同的方法,但是没有获得锁,也无法访问。

public class TwoSyncMethod {

public static void main(String[] args) {

final TwoSyncMethod twoSyncMethod = new TwoSyncMethod();

Thread t1 = new Thread(new Runnable() {

public void run() {

twoSyncMethod.syncMethod1();

}

}, "A");

t1.start();

Thread t2 = new Thread(new Runnable() {

public void run() {

twoSyncMethod.syncMethod2();

}

}, "B");

t2.start();

}

public synchronized void syncMethod1() {

for (int i = 0; i < 5; i++) {

System.out.println(Thread.currentThread().getName() + " at syncMethod1(): " + i);

try {

Thread.sleep(500);

} catch (InterruptedException ie) {

}

}

}

public synchronized void syncMethod2() {

for (int i = 0; i < 5; i++) {

System.out.println(Thread.currentThread().getName() + " at syncMethod2(): " + i);

try {

Thread.sleep(500);

} catch (InterruptedException ie) {

}

}

}

}

输出结果:

A at syncMethod1(): 0

A at syncMethod1(): 1

A at syncMethod1(): 2

A at syncMethod1(): 3

A at syncMethod1(): 4

B at syncMethod2(): 0

B at syncMethod2(): 1

B at syncMethod2(): 2

B at syncMethod2(): 3

B at syncMethod2(): 4


版权声明:本文内容由网络用户投稿,版权归原作者所有,本站不拥有其著作权,亦不承担相应法律责任。如果您发现本站中有涉嫌抄袭或描述失实的内容,请联系我们jiasou666@gmail.com 处理,核实后本网站将在24小时内删除侵权内容。

上一篇:Java Socket编程实例(三)
下一篇:深入解析Java编程中final关键字的作用
相关文章

 发表评论

暂时没有评论,来抢沙发吧~